CHAPTER XVI.

GEOMETRY.

There is certainly no royal road to geometry, but the way may be rendered easy and pleasant by timely preparations for the journey.

Without any previous knowledge of the country, or of its peculiar language, how can we expect that our young traveller should advance with facility or pleasure? We are anxious that our pupil should acquire a taste for accurate reasoning, and we resort to Geometry, as the most perfect, and the purest series of ratiocination which has been invented. Let us, then, sedulously avoid whatever may disgust him; let his first steps be easy, and successful; let them be frequently repeated until he can trace them without a guide.

We have recommended in the chapter upon Toys, that children should, from their earliest years, be accustomed to the shape of what are commonly called regular solids; they should also be accustomed to the figures in mathematical diagrams. To these should be added their respective names, and the whole language of the science should be rendered as familiar as possible.

Mr. Donne, an ingenious mathematician of Bristol, has published a prospectus of an Essay on Mechanical Geometry: he has executed, and employed with success, models in wood and metal for demonstrating propositions in geometry in a palpable manner. We have endeavoured, in vain, to procure a set of these models for our own pupils, but we have no doubt of their entire utility.

What has been acquired in childhood, should not be suffered to escape the memory. Dionysius[19] had mathematical diagrams described upon the floors of his apartments, and thus recalled their demonstrations to his memory. The slightest addition that can be conceived, if it be continued daily, will imperceptibly, not only preserve what has been already acquired, but will, in a few years, amount to as large a stock of mathematical knowledge as we could wish. It is not our object to make mathematicians, but to make it easy to our pupil to become a mathematician, if his interest, or his ambition, make it desirable; and, above all, to habituate him to clear reasoning, and close attention. And we may here remark, that an early acquaintance with the accuracy of mathematical demonstration, does not, within our experience, contract the powers of the imagination. On the contrary, we think that a young lady of twelve years old, who is now no more, and who had an uncommon propensity to mathematical reasoning, had an imagination remarkably vivid and inventive.[20]

We have accustomed our pupils to form in their minds the conception of figures generated from points and lines, and surfaces supposed to move in different directions, and with different velocities. It may be thought, that this would be a difficult occupation for young minds; but, upon trial, it will be found not only easy to them, but entertaining. In their subsequent studies, it will be of material advantage; it will facilitate their progress not only in pure mathematics, but in mechanics and astronomy, and in every operation of the mind which requires exact reflection.