To demand steady thought from a person who has not been trained to it, is one of the most unprofitable and dangerous requisitions that can be made in education.

"Full in the midst of Euclid dip at once,
And petrify a genius to a dunce."

In the usual commencement of mathematical studies, the learner is required to admit that a point, of which he sees the prototype, a dot before him, has neither length, breadth, nor thickness. This, surely, is a degree of faith not absolutely necessary for the neophyte in science. It is an absurdity which has, with much success, been attacked in "Observations on the Nature of Demonstrative Evidence," by Doctor Beddoes.

We agree with the doctor as to the impropriety of calling a visible dot, a point without dimensions. But, notwithstanding the high respect which the author commands by a steady pursuit of truth on all subjects of human knowledge, we cannot avoid protesting against part of the doctrine which he has endeavoured to inculcate. That the names point, radius, &c. are derived from sensible objects, need not be disputed; but surely the word centre can be understood by the human mind without the presence of any visible or tangible substance.

Where two lines meet, their junction cannot have dimensions; where two radii of a circle meet, they constitute the centre, and the name centre may be used for ever without any relation to a tangible or visible point. The word boundary, in like manner, means the extreme limit we call a line; but to assert that it has thickness, would, from the very terms which are used to describe it, be a direct contradiction. Bishop Berkely, Mr. Walton, Philathetes Cantabrigiensis, and Mr. Benjamin Robins, published several pamphlets upon this subject about half a century ago. No man had a more penetrating mind than Berkely; but we apprehend that Mr. Robins closed the dispute against him. This is not meant as an appeal to authority, but to apprize such of our readers as wish to consider the argument, where they may meet an accurate investigation of the subject. It is sufficient for our purpose, to warn preceptors not to insist upon their pupils' acquiescence in the dogma, that a point, represented by a dot, is without dimensions; and at the same time to profess, that we understand distinctly what is meant by mathematicians when they speak of length without breadth, and of a superfices without depth; expressions which, to our minds, convey a meaning as distinct as the name of any visible or tangible substance in nature, whose varieties from shade, distance, colour, smoothness, heat, &c. are infinite, and not to be comprehended in any definition.

In fact, this is a dispute merely about words, and as the extension of the art of printing puts it in the power of every man to propose and to defend his opinions at length, and at leisure, the best friends may support different sides of a question with mutual regard, and the most violent enemies with civility and decorum. Can we believe that Tycho Brahe lost half his nose in a dispute with a Danish nobleman about a mathematical demonstration?

[19] Plutarch.—Life of Dion.

[20] V. Rivuletta, a little story written entirely by her in 1786.


CHAPTER XVII.