CHAPTER III.
THE GENERAL PRINCIPLES OF THE CALCULUS OF PROBABILITIES.

First Principle.—The first of these principles is the definition itself of probability, which, as has been seen, is the ratio of the number of favorable cases to that of all the cases possible.

Second Principle.—But that supposes the various cases equally possible. If they are not so, we will determine first their respective possibilities, whose exact appreciation is one of the most delicate points of the theory of chance. Then the probability will be the sum of the possibilities of each favorable case. Let us illustrate this principle by an example.

Let us suppose that we throw into the air a large and very thin coin whose two large opposite faces, which we will call heads and tails, are perfectly similar. Let us find the probability of throwing heads at least one time in two throws. It is clear that four equally possible cases may arise, namely, heads at the first and at the second throw; heads at the first throw and tails at the second; tails at the first throw and heads at the second; finally, tails at both throws. The first three cases are favorable to the event whose probability is sought; consequently this probability is equal to ¾; so that it is a bet of three to one that heads will be thrown at least once in two throws.

We can count at this game only three different cases, namely, heads at the first throw, which dispenses with throwing a second time; tails at the first throw and heads at the second; finally, tails at the first and at the second throw. This would reduce the probability to ⅔ if we should consider with d'Alembert these three cases as equally possible. But it is apparent that the probability of throwing heads at the first throw is ½, while that of the two other cases is ¼, the first case being a simple event which corresponds to two events combined: heads at the first and at the second throw, and heads at the first throw, tails at the second. If we then, conforming to the second principle, add the possibility ½ of heads at the first throw to the possibility ¼ of tails at the first throw and heads at the second, we shall have ¾ for the probability sought, which agrees with what is found in the supposition when we play the two throws. This supposition does not change at all the chance of that one who bets on this event; it simply serves to reduce the various cases to the cases equally possible.

Third Principle.—One of the most important points of the theory of probabilities and that which lends the most to illusions is the manner in which these probabilities increase or diminish by their mutual combination. If the events are independent of one another, the probability of their combined existence is the product of their respective probabilities. Thus the probability of throwing one ace with a single die is ⅙; that of throwing two aces in throwing two dice at the same time is 136. Each face of the one being able to combine with the six faces of the other, there are in fact thirty-six equally possible cases, among which one single case gives two aces. Generally the probability that a simple event in the same circumstances will occur consecutively a given number of times is equal to the probability of this simple event raised to the power indicated by this number. Having thus the successive powers of a fraction less than unity diminishing without ceasing, an event which depends upon a series of very great probabilities may become extremely improbable. Suppose then an incident be transmitted to us by twenty witnesses in such manner that the first has transmitted it to the second, the second to the third, and so on. Suppose again that the probability of each testimony be equal to the fraction 910; that of the incident resulting from the testimonies will be less than ⅛. We cannot better compare this diminution of the probability than with the extinction of the light of objects by the interposition of several pieces of glass. A relatively small number of pieces suffices to take away the view of an object that a single piece allows us to perceive in a distinct manner. The historians do not appear to have paid sufficient attention to this degradation of the probability of events when seen across a great number of successive generations; many historical events reputed as certain would be at least doubtful if they were submitted to this test.

In the purely mathematical sciences the most distant consequences participate in the certainty of the principle from which they are derived. In the applications of analysis to physics the results have all the certainty of facts or experiences. But in the moral sciences, where each inference is deduced from that which precedes it only in a probable manner, however probable these deductions may be, the chance of error increases with their number and ultimately surpasses the chance of truth in the consequences very remote from the principle. Fourth Principle.—When two events depend upon each other, the probability of the compound event is the product of the probability of the first event and the probability that, this event having occurred, the second will occur. Thus in the preceding case of the three urns A, B, C, of which two contain only white balls and one contains only black balls, the probability of drawing a white ball from the urn C is ⅔, since of the three urns only two contain balls of that color. But when a white ball has been drawn from the urn C, the indecision relative to that one of the urns which contain only black balls extends only to the urns A and B; the probability of drawing a white ball from the urn B is ½; the product of ⅔ by ½, or ⅓, is then the probability of drawing two white balls at one time from the urns B and C.

We see by this example the influence of past events upon the probability of future events. For the probability of drawing a white ball from the urn B, which primarily is ⅔, becomes ½ when a white ball has been drawn from the urn C; it would change to certainty if a black ball had been drawn from the same urn. We will determine this influence by means of the following principle, which is a corollary of the preceding one.

Fifth Principle.—If we calculate à priori the probability of the occurred event and the probability of an event composed of that one and a second one which is expected, the second probability divided by the first will be the probability of the event expected, drawn from the observed event.

Here is presented the question raised by some philosophers touching the influence of the past upon the probability of the future. Let us suppose at the play of heads and tails that heads has occurred oftener than tails. By this alone we shall be led to believe that in the constitution of the coin there is a secret cause which favors it. Thus in the conduct of life constant happiness is a proof of competency which should induce us to employ preferably happy persons. But if by the unreliability of circumstances we are constantly brought back to a state of absolute indecision, if, for example, we change the coin at each throw at the play of heads and tails, the past can shed no light upon the future and it would be absurd to take account of it.