Sixth Principle.—Each of the causes to which an observed event may be attributed is indicated with just as much likelihood as there is probability that the event will take place, supposing the event to be constant. The probability of the existence of any one of these causes is then a fraction whose numerator is the probability of the event resulting from this cause and whose denominator is the sum of the similar probabilities relative to all the causes; if these various causes, considered à priori, are unequally probable, it is necessary, in place of the probability of the event resulting from each cause, to employ the product of this probability by the possibility of the cause itself. This is the fundamental principle of this branch of the analysis of chances which consists in passing from events to causes.
This principle gives the reason why we attribute regular events to a particular cause. Some philosophers have thought that these events are less possible than others and that at the play of heads and tails, for example, the combination in which heads occurs twenty successive times is less easy in its nature than those where heads and tails are mixed in an irregular manner. But this opinion supposes that past events have an influence on the possibility of future events, which is not at all admissible. The regular combinations occur more rarely only because they are less numerous. If we seek a cause wherever we perceive symmetry, it is not that we regard a symmetrical event as less possible than the others, but, since this event ought to be the effect of a regular cause or that of chance, the first of these suppositions is more probable than the second. On a table we see letters arranged in this order, Constantinople, and we judge that this arrangement is not the result of chance, not because it is less possible than the others, for if this word were not employed in any language we should not suspect it came from any particular cause, but this word being in use among us, it is incomparably more probable that some person has thus arranged the aforesaid letters than that this arrangement is due to chance.
This is the place to define the word extraordinary. We arrange in our thought all possible events in various classes; and we regard as extraordinary those classes which include a very small number. Thus at the play of heads and tails the occurrence of heads a hundred successive times appears to us extraordinary because of the almost infinite number of combinations which may occur in a hundred throws; and if we divide the combinations into regular series containing an order easy to comprehend, and into irregular series, the latter are incomparably more numerous. The drawing of a white ball from an urn which among a million balls contains only one of this color, the others being black, would appear to us likewise extraordinary, because we form only two classes of events relative to the two colors. But the drawing of the number 475813, for example, from an urn that contains a million numbers seems to us an ordinary event; because, comparing individually the numbers with one another without dividing them into classes, we have no reason to believe that one of them will appear sooner than the others.
From what precedes, we ought generally to conclude that the more extraordinary the event, the greater the need of its being supported by strong proofs. For those who attest it, being able to deceive or to have been deceived, these two causes are as much more probable as the reality of the event is less. We shall see this particularly when we come to speak of the probability of testimony.
Seventh Principle.—The probability of a future event is the sum of the products of the probability of each cause, drawn from the event observed, by the probability that, this cause existing, the future event will occur. The following example will illustrate this principle.
Let us imagine an urn which contains only two balls, each of which may be either white or black. One of these balls is drawn and is put back into the urn before proceeding to a new draw. Suppose that in the first two draws white balls have been drawn; the probability of again drawing a white ball at the third draw is required.
Only two hypotheses can be made here: either one of the balls is white and the other black, or both are white. In the first hypothesis the probability of the event observed is ¼; it is unity or certainty in the second. Thus in regarding these hypotheses as so many causes, we shall have for the sixth principle ⅕ and ⅘ for their respective probabilities. But if the first hypothesis occurs, the probability of drawing a white ball at the third draw is ½; it is equal to certainty in the second hypothesis; multiplying then the last probabilities by those of the corresponding hypotheses, the sum of the products, or 9⁄10, will be the probability of drawing a white ball at the third draw.
When the probability of a single event is unknown we may suppose it equal to any value from zero to unity. The probability of each of these hypotheses, drawn from the event observed, is, by the sixth principle, a fraction whose numerator is the probability of the event in this hypothesis and whose denominator is the sum of the similar probabilities relative to all the hypotheses. Thus the probability that the possibility of the event is comprised within given limits is the sum of the fractions comprised within these limits. Now if we multiply each fraction by the probability of the future event, determined in the corresponding hypothesis, the sum of the products relative to all the hypotheses will be, by the seventh principle, the probability of the future event drawn from the event observed. Thus we find that an event having occurred successively any number of times, the probability that it will happen again the next time is equal to this number increased by unity divided by the same number, increased by two units. Placing the most ancient epoch of history at five thousand years ago, or at 1826213 days, and the sun having risen constantly in the interval at each revolution of twenty-four hours, it is a bet of 1826214 to one that it will rise again to-morrow. But this number is incomparably greater for him who, recognizing in the totality of phenomena the principal regulator of days and seasons, sees that nothing at the present moment can arrest the course of it.
Buffon in his Political Arithmetic calculates differently the preceding probability. He supposes that it differs from unity only by a fraction whose numerator is unity and whose denominator is the number 2 raised to a power equal to the number of days which have elapsed since the epoch. But the true manner of relating past events with the probability of causes and of future events was unknown to this illustrious writer.