1101. As an electric current acts by induction with equal energy at the moment of its commencement as at the moment of its cessation (10. 26.), but in a contrary direction, the reference of the effects under examination to an inductive action, would lead to the conclusion that corresponding effects of an opposite nature must occur in a long wire, a helix, or an electro-magnet, every time that contact is made with the electromotor. These effects will tend to establish a resistance for the first moment in the long conductor, producing a result equivalent to the reverse of a shock or a spark. Now it is very difficult to devise means fit for the recognition of such negative results; but as it is probable that some positive effect is produced at the time, if we knew what to expect, I think the few facts bearing upon this subject with which I am acquainted are worth recording.
1102. The electro-magnet was arranged with an electrolyzing apparatus at x, as before described (1084.), except that the intensity of the chemical action at the electromotor was increased until the electric current was just able to produce the feeblest signs of decomposition whilst contact was continued at G and E (1079.); (the iodine of course appearing against the end of the cross wire P;) the wire N was also separated from A at r, so that contact there could be made or broken at pleasure. Under these circumstances the following set of actions was repeated several times: contact was broken at r, then broken at G, next made at r, and lastly renewed at G; thus any current from N to P due to breaking of contact was avoided, but any additional force to the current from P to N due to making contact could be observed. In this way it was found, that a much greater decomposing effect (causing the evolution of iodine against P) could be obtained by a few completions of contact than by the current which could pass in a much longer time if the contact was continued. This I attribute to the act of induction in the wire ABD at the moment of contact rendering that wire a worse conductor, or rather retarding the passage of the electricity through it for the instant, and so throwing a greater quantity of the electricity which the electromotor could produce, through the cross wire passage NP. The instant the induction ceased, ABD resumed its full power of carrying a constant current of electricity, and could have it highly increased, as we know by the former experiments (1060.) by the opposite inductive action brought into activity at the moment contact at Z or C was broken.
1103. A galvanometer was then introduced at x, and the deflection of the needle noted whilst contact was continued at G and E: the needle was then blocked as before in one direction (1087.), so that it should not return when the current ceased, but remain in the position in which the current could retain it. Contact at G or E was broken, producing of course no visible effect; it was then renewed, and the needle was instantly deflected, passing from the blocking pins to a position still further from its natural place than that which the constant current could give, and thus showing, by the temporary excess of current in this cross communication, the temporary retardation in the circuit ABD.
1104. On adjusting a platina wire at x (1081.) so that it should not be ignited by the current passing through it whilst contact at G and E was continued, and yet become red-hot by a current somewhat more powerful, I was readily able to produce its ignition upon making contact, and again upon breaking contact. Thus the momentary retardation in ABD on making contact was again shown by this result, as well also as the opposite result upon breaking contact. The two ignitions of the wire at x were of course produced by electric currents moving in opposite directions.
1105. Using the helix only, I could not obtain distinct deflections at x, due to the extra effect on making contact, for the reasons already mentioned (1088.). By using a very fine platina wire there (1083.), I did succeed in obtaining the igniting effect for making contact in the same manner, though by no means to the same degree, as with the electro-magnet (1104).
1106. We may also consider and estimate the effect on making contact, by transferring the force of induction from the wire carrying the original current to a lateral wire, as in the cases described (1090.); and we then are sure, both by the chemical and galvanometrical results (1091.), that the forces upon making and breaking contact, like action and reaction, are equal in their strength but contrary in their direction. If, therefore, the effect on making contact resolves itself into a mere retardation of the current at the first moment of its existence, it must be, in its degree, equivalent to the high exaltation of that same current at the moment contact is broken.
1107. Thus the case, under the circumstances, is, that the intensity and quantity of electricity moving in a current are smaller when the current commences or is increased, and greater when it diminishes or ceases, than they would be if the inductive action occurring at these moments did not take place; or than they are in the original current wire if the inductive action be transferred from that wire to a collateral one (1090.).
1108. From the facility of transference to neighbouring wires, and from the effects generally, the inductive forces appear to be lateral, i.e. exerted in a direction perpendicular to the direction of the originating and produced currents: and they also appear to be accurately represented by the magnetic curves, and closely related to, if not identical with, magnetic forces.
1109. There can be no doubt that the current in one part of a wire can act by induction upon other parts of the same wire which are lateral to the first, i.e. in the same vertical section (74.), or in the parts which are more or less oblique to it (1112.), just as it can act in producing a current in a neighbouring wire or in a neighbouring coil of the same wire. It is this which gives the appearance of the current acting upon itself: but all the experiments and all analogy tend to show that the elements (if I may so say) of the currents do not act upon themselves, and so cause the effect in question, but produce it by exciting currents in conducting matter which is lateral to them.
1110. It is possible that some of the expressions I have used may seem to imply, that the inductive action is essentially the action of one current upon another, or of one element of a current upon another element of the same current. To avoid any such conclusion I must explain more distinctly my meaning. If an endless wire be taken, we have the means of generating a current in it which shall run round the circuit without adding any electricity to what was previously in the wire. As far as we can judge, the electricity which appears as a current is the same as that which before was quiescent in the wire; and though we cannot as yet point out the essential condition of difference of the electricity at such times, we can easily recognize the two states. Now when a current acts by induction upon conducting matter lateral to it, it probably acts upon the electricity in that conducting matter whether it be in the form of a current or quiescent, in the one case increasing or diminishing the current according to its direction, in the other producing a current, and the amount of the inductive action is probably the same in both cases. Hence, to say that the action of induction depended upon the mutual relation of two or more currents, would, according to the restricted sense in which the term current is understood at present (283. 517. 667.), be an error.