1111. Several of the effects, as, for instances, those with helices(1066.), with according or counter currents (1097. 1098.), and those on the production of lateral currents (1090.), appeared to indicate that a current could produce an effect of induction in a neighbouring wire more readily than in its own carrying wire, in which case it might be expected that some variation of result would be produced if a bundle of wires were used as a conductor instead of a single wire. In consequence the following experiments were made. A copper wire one twenty-third of an inch in diameter was cut into lengths of five feet each, and six of these being laid side by side in one bundle, had their opposite extremities soldered to two terminal pieces of copper. This arrangement could be used as a discharging wire, but the general current could be divided into six parallel streams, which might be brought close together, or, by the separation of the wires, be taken more or less out of each other's influence. A somewhat brighter spark was, I think, obtained on breaking contact when the six wires were close together than when held asunder.
1112. Another bundle, containing twenty of these wires, was eighteen feet long: the terminal pieces were one-fifth of an inch in diameter, and each six inches long. This was compared with nineteen feet in length of copper wire one-fifth of an inch in diameter. The bundle gave a smaller spark on breaking contact than the latter, even when its strands were held together by string: when they were separated, it gave a still smaller spark. Upon the whole, however, the diminution of effect was not such as I expected: and I doubt whether the results can be considered as any proof of the truth of the supposition which gave rise to them.
1113. The inductive force by which two elements of one current (1109. 1110.) act upon each other, appears to diminish as the line joining them becomes oblique to the direction of the current and to vanish entirely when it is parallel. I am led by some results to suspect that it then even passes into the repulsive force noticed by Ampère[224]; which is the cause of the elevations in mercury described by Sir Humphry Davy[225], and which again is probably directly connected with the quality of intensity.
1114. Notwithstanding that the effects appear only at the making and breaking of contact, (the current remaining unaffected, seemingly, in the interval,) I cannot resist the impression that there is some connected and correspondent effect produced by this lateral action of the elements of the electric stream during the time of its continuance (60. 242.). An action of this kind, in fact, is evident in the magnetic relations of the parts of the current. But admitting (as we may do for the moment) the magnetic forces to constitute the power which produces such striking and different results at the commencement and termination of a current, still there appears to be a link in the chain of effects, a wheel in the physical mechanism of the action, as yet unrecognised. If we endeavour to consider electricity and magnetism as the results of two forces of a physical agent, or a peculiar condition of matter, exerted in determinate directions perpendicular to each other, then, it appears to me, that we must consider these two states or forces as convertible into each other in a greater or smaller degree; i.e. that an element of an electric current has not a determinate electric force and a determinate magnetic force constantly existing in the same ratio, but that the two forces are, to a certain degree, convertible by a process or change of condition at present unknown to us. How else can a current of a given intensity and quantity be able, by its direct action, to sustain a state which, when allowed to react, (at the cessation of the original current,) shall produce a second current, having an intensity and quantity far greater than the generating one? This cannot result from a direct reaction of the electric force; and if it result from a change of electrical into magnetic force, and a reconversion back again, it will show that they differ in something more than mere direction, as regards that agent in the conducting wire which constitutes their immediate cause.
1115. With reference to the appearance, at different times, of the contrary effects produced by the making and breaking contact, and their separation by an intermediate and indifferent state, this separation is probably more apparent than real. If the conduction of electricity be effected by vibrations (283.), or by any other mode in which opposite forces are successively and rapidly excited and neutralized, then we might expect a peculiar and contrary development of force at the commencement and termination of the periods during which the conducting action should last (somewhat in analogy with the colours produced at the outside of an imperfectly developed solar spectrum): and the intermediate actions, although not sensible in the same way, may be very important and, for instance, perhaps constitute the very essence of conductibility. It is by views and reasons such as these, which seem to me connected with the fundamental laws and facts of electrical science, that I have been induced to enter, more minutely than I otherwise should have done, into the experimental examination of the phenomena described in this paper.
1116. Before concluding, I may briefly remark, that on using a voltaic battery of fifty pairs of plates instead of a single pair (1052.), the effects were exactly of the same kind. The spark on making contact, for the reasons before given, was very small (1101. 1107.); that on breaking contact, very excellent and brilliant. The continuous discharge did not seem altered in character, whether a short wire or the powerful electro-magnet were used as a connecting discharger.
1117. The effects produced at the commencement and end of a current, (which are separated by an interval of time when that current is supplied from a voltaic apparatus,) must occur at the same moment when a common electric discharge is passed through a long wire. Whether, if happening accurately at the same moment, they would entirely neutralize each other, or whether they would not still give some definite peculiarity to the discharge, is a matter remaining to be examined; but it is very probable that the peculiar character and pungency of sparks drawn from a long wire depend in part upon the increased intensity given at the termination of the discharge by the inductive action then occurring.
1118. In the wire of the helix of magneto-electric machines, (as, for instance, in Mr. Saxton's beautiful arrangement,) an important influence of these principles of action is evidently shown. From the construction of the apparatus the current is permitted to move in a complete metallic circuit of great length during the first instants of its formation: it gradually rises in strength, and is then suddenly stopped by the breaking of the metallic circuit; and thus great intensity is given by induction to the electricity, which at that moment passes (1064. 1060.). This intensity is not only shown by the brilliancy of the spark and the strength of the shock, but also by the necessity which has been experienced of well-insulating the convolutions of the helix, in which the current is formed: and it gives to the current a force at these moments very far above that which the apparatus could produce if the principle which forms the subject of this paper were not called into play.
Royal Institution,
December 8th, 1834.