Early experiments—theory—description of storage cell—electrolyte—effect of current passing through electrolyte—types of storage batteries—Plant cells—Willard plates; wood separator—parts of "Autex" automobile cells—Faure or pasted type—comparison of Plant and Faure plates—the electrolyte; kind generally used; preparation; test; mixing acid and water; kind of vessel used;—specific gravity table—effect of deep vessel—density of electrolyte—hydrometer syringe—impurities in electrolyte—tests for impurities; chlorine, nitrates, acetic acid, iron, copper, mercury, platinum—old electrolyte—voltage of a secondary cell—charging—connections for charging—charging; first time; period; regulation of voltage—Edison cell data—frequency of charging—cadmium test—emergency connections for weak ignition battery—portable testing instruments—charge indications—two methods of charging from a direct current lighting system—colors of the plates—how best results are obtained in charging—charge voltage—two ways of charging—diagram of charging connections—how to keep charging current constant—tests while charging; after charging—charge indications—behavior of electrolyte during discharge—lead burning outfit—"boiling"; causes—hydrogen gas generator for lead burning—quick charging—charging through the night—charging period for new battery—Willard underhung battery box for automobiles—high charging rates—"National" instructions for taking voltage readings—mercury arc rectifier—capacity—table of capacity variation for different discharge rates—how to increase the capacity—discharging; too rapidly rating; maximum rate—Edison alternating current rectifier—attention after discharging—the battery room—battery attendants—points on care and management—placement of cells—how to avoid leakage—precautions when unpacking cells—assembling cells—connections—precaution in joining terminals—battery troubles—short circuiting; indication; location—overdischarge; buckling—sulphation of plates—data on National cells; American cells; Autex cells—action in idle cell—lack of capacity—how to prevent lead poisoning—low specific gravity without short circuits; causes—treatment of weak cells—pole testing paper—disconnecting cells—sulphuric acid specific gravity table—how to take a battery out of commission—Witham charging board—putting batteries into commission—cleaning jars—table of voltage charge as affected by discharge rate—condensed rules for the proper care of batteries.
Uses of storage batteries; their importance in power plants—load curve showing use of storage battery as aid to the generating machinery—parallel connection of battery and dynamo—"floating the battery on the line"—diagram showing effect of battery in regulating dynamo load—connections and circuit control apparatus—diagram showing action of battery as a reservoir of reserve power—three wire system with battery and dynamo—methods of control for storage batteries—diagram of connections for ignition outfit—variable resistance—end cell switches—diagram of connection of battery equipment for residential lighting plant—end cell switch diagram—features of end cell switch construction—end cell switch control—circuit diagram for charging battery in two parallel groups and discharging in series—reverse pressure cells; regulation—Holzer-Cabot dynamotor—boosters—application of series booster system—Bijur's battery system—load diagram—characteristics of series booster—shunt boosters; with battery—Entz' carbon pile booster system—application of shunt booster—circuit diagram for non-reversible shunt booster and battery system—compound boosters; their connections—method of charging battery at one voltage and supplying lights at a different voltage—connections of one form of differential booster—differential boosters; with compensating coil; adaptation.
CHAPTER XXXVI
DISTRIBUTION SYSTEMS
The selection of the system of transmission and distribution of electric energy from the generating plant to lamps, motors, and other devices, is governed mainly by the cost of the metallic conductors, which in many electrical installations, is a larger item than the cost of the generating plant itself. This is especially true in case of long distance transmission, while in those of the lighting plants, the cost of wiring is usually more expensive than that of the boilers, engines, and generators combined.
The principal distribution systems, are classed as:
1. Series;
2. Parallel;
3. Series-parallel;
4. Parallel-series.
Ques. What is the characteristic feature of each class?
Ans. In the series systems the current is constant, but the voltage varies. In the parallel systems, the voltage is constant, but the current varies.
Series System of Distribution.—A series system affords the simplest arrangement of lamps, motors, or other devices supplied with electric energy. The connections of such a system are shown in [fig. 783]. The current from the terminal of the dynamo passes through the lamps, L, L, L, L, one after the other and finally returns to the terminal. The current remains practically constant, but the voltage falls throughout the circuit in direct proportion to the resistance, and the difference in pressure between any two points in the circuit is equal to the current in amperes multiplied by the resistance in ohms included between them.