The air not only exists in the region where we distinctly recognise it; it also occupies the waters and the under earth. In the waters it occurs as a mechanical mixture which is brought about as the rain forms and falls in the air, as the streams flow to the sea, and as the waves roll over the deep and beat against the shores. In the realm of the waters, as well as on the land, the air is necessary for the maintenance of all animal forms; but for its presence such life would vanish from the earth.
Owing to certain peculiarities in its constitution, the atmosphere of our earth, and that doubtless of myriad other spheres, serves as a medium of communication between different regions. It is, as we know, in ceaseless motion at rates which may vary from the speed in the greatest tempests, which may move at the rate of somewhere a hundred and fifty miles an hour, to the very slow movements which occur in caverns, where the transfer is sometimes effected at an almost microscopic rate in the space of a day. The motion of the atmosphere is brought about by the action of heat here and there, and in a trifling way, by the heat from the interior of the earth escaping through hot springs or volcanoes, but almost altogether by the heat of the sun. If we can imagine the earth cut off from the solar radiation, the air would cease to move. We often note how the variable winds fall away in the nighttime. Those who in seeking for the North Pole have spent winters in the long-continued dark of that region have noted that the winds almost cease to blow, the air being disturbed only when a storm originated in the sunlit realm forced its way into the circumpolar darkness.
The sun's heat does not directly disturb the atmosphere; if we could take the solid sphere of the world away, leaving the air, the rays would go straight through, and there would be no winds produced. This is due to the fact that the air permits the direct rays of heat, such as come from the sun, to pass through it with very slight resistance. In an aërial globe such as we have imagined, the rays impinging upon its surface would be slightly thrown out of their path as they are in passing through a lens, but they would journey on in space without in any considerable measure warming the mass. Coming, however, upon the solid earth, the heat rays warm the materials on which they are arrested, bringing them to a higher temperature than the air. Then these heated materials radiate the energy into the air; it happens, however, that this radiant heat can not journey back into space as easily as it came in; therefore the particles of air next the surface acquire a relatively high temperature. Thus a thermometer next the ground may rise to over a hundred degrees Fahrenheit, while at the same time the fleecy clouds which we may observe floating at the height of five or six miles above the surface are composed of frozen water.
The effect of the heated air which acquires its temperature by radiation from the earth's surface is to produce the winds. This it brings about in a very simple manner, though the details of the process have a certain complication. The best illustration of the mode in which the winds are produced is obtained by watching what takes place about an ordinary fire at the bottom of a chimney. As soon as the fire is lit, we observe that the air about it, so far as it is heated, tends upward, drawing the smoke with it. If the air in the chimney be cold, it may not draw well at first; but in a few minutes the draught is established, or, in other words, the heated lower air breaks its way up the shaft, gradually pushing the cooler matter out at the top. In still air we may observe the column from the flue extending about the chimney-top, sometimes to the height of a hundred feet or more before it is broken to pieces. It is well here to note the fact that the energy of the draught in a chimney is, with a given heat of fire and amount of air which is permitted to enter the shaft, directly proportionate to the height; thus in very tall flues, between two and three hundred feet high, which are sometimes constructed, the uprush is at the speed of a gale.
Whenever the air next the surface is so far heated that it may overcome the inertia of the cooler air above, it forces its way up through it in the general manner indicated in the chimney flue. When such a place of uprush is established, the hot air next the surface flows in all directions toward the shaft, joining the expedition to the heights of the atmosphere. Owing to the conditions of the earth's surface, which we shall now proceed to trace, these ascents of heated air belong in two distinct classes—those which move upward through more or less cylindrical chimneys in the atmosphere, shafts which are impermanent, which vary in diameter from a few feet to fifty or perhaps a hundred miles, and which move over the surface of the earth; and another which consists of a broad, beltlike shaft in the equatorial regions, which in a way girdles the earth, remains in about the same place, continually endures, and has a width of hundreds of miles. Of these two classes of uprushes we shall first consider the greatest, which occurs in the central portions of the tropical realm.
Under the equator, owing to the fact that the sun for a considerable belt of land and sea maintains the earth at a high temperature, there is a general updraught which began many million years ago, probably before the origin of life, in the age when our atmosphere assumed its present conditions. Into this region the cooler air from the north and south necessarily flows, in part pressed in by the weight of the cold air which overlies it, but aided in its motion by the fact that the particles which ascend leave place for others to occupy. Over the surfaces of the land within the tropical region this draught toward what we may term the equatorial chimney is perturbed by the irregularities of the surface and many local accidents. But on the sea, where the conditions are uniform, the air moving toward the point of ascent is marked in the trade winds, which blow with a steadfast sweep down toward the equator. Many slight actions, such as the movement of the hot and cold currents of the sea, the local air movements from the lands or from detached islands, somewhat perturb the trade winds, but they remain among the most permanent features in this changeable world. It is doubtful if anything on this sphere except the atoms and molecules of matter have varied as little as the trade winds in the centre of the wide ocean. So steadfast and uniform are they that it is said that the helm and sails of a ship may be set near the west coast of South America and be left unchanged for a voyage which will carry the navigator in their belt across the width of the Pacific.
Rising up from the earth in the tropical belt, the air attains the height of several thousand feet; it then begins to curve off toward the north and south, and at the height of somewhere about three to five miles above the surface is again moving horizontally toward either pole; attaining a distance on that journey, it gradually settles down to the surface of the earth, and ceases to move toward higher latitudes. If the earth did not revolve upon its axis the course of these winds along the surface toward the equator, and in the upper air back toward the poles, would be made in what we may call a square manner—that is, the particles of air would move toward the point where they begin to rise upward in due north and south lines, according as they came from the southern or northern hemisphere, and the upper currents or counter trades would retrace their paths also parallel with the meridians or longitude lines. But because the earth revolves from west to east, the course of the trade winds is oblique to the equator, those in the northern hemisphere blowing from northeast to southwest, those in the southern from southeast to northwest. The way in which the motion of the earth affects the direction of these currents is not difficult to understand. It is as follows:
Let us conceive a particle of air situated immediately over the earth's polar axis. Such an atom would by the rotation of the sphere accomplish no motion except, indeed, that it might turn round on its own centre. It would acquire no velocity whatever by virtue of the earth's movement. Then let us imagine the particle moving toward the equator with the speed of an ordinary wind. At every step of its journey toward lower latitudes it would come into regions having a greater movement than those which it had just left. Owing to its inertia, it would thus tend continually to lag behind the particles of matter about it. It would thus fall off to the westward, and, in place of moving due south, would in the northern hemisphere drift to the southwest, and in the southern hemisphere toward the northwest. A good illustration of this action may be obtained from an ordinary turn-table such as is used about railway stations to reverse the position of a locomotive. If the observer will stand in the centre of such a table while it is being turned round he will perceive that his body is not swayed to the right or left. If he will then try to walk toward the periphery of the rotating disk, he will readily note that it is very difficult, if not impossible, to walk along the radius of the circle; he naturally falls behind in the movement, so that his path is a curved line exactly such as is followed by the winds which move toward the equator in the trades. If now he rests a moment on the periphery of the table, so that his body acquires the velocity of the disk at that point, and then endeavours to walk toward the centre, he will find that again he can not go directly; his path deviates in the opposite direction—in other words, the body continually going to a place having a less rate of movement by virtue of the rotation of the earth, on account of its momentum is ever moving faster than the surface over which it passes. This experiment can readily be tried on any small rotating disk, such as a potter's wheel, or by rolling a marble or a shot from the centre to the circumference and from the circumference to the centre. A little reflection will show the inquirer how these illustrations clearly account for the oblique though opposite sets of the trade winds in the upper and lower parts of the air.
The dominating effect of the tropical heat in controlling the movements of the air currents extends, on the ocean surface, in general about as far north and south as the parallels of forty degrees, considerably exceeding the limits of the tropics, those lines where the sun, because of the inclination of the earth's axis, at some time of the year comes just overhead. Between these belts of trade winds there is a strip or belt under the region where the atmosphere is rising from the earth, in which the winds are irregular and have little energy. This region of the "doldrums" or frequent calms is one of much trouble to sailing ships on their voyages from one hemisphere to another. In passing through it their sails are filled only by the airs of local storms, or winds which make their way into that part of the sea from the neighbouring continents. Beyond the trade-wind belt, toward the poles, the movements of the atmosphere are dependent in part on the counter trades which descend to the surface of the earth in latitudes higher than that in which the surface or trade winds flow. Thus along our Atlantic coast, and even in the body of the continent, at times when the air is not controlled by some local storm, the counter trade blows with considerable regularity.