The effect of the trade and counter-trade movements of the air on the distribution of temperature over the earth's surface is momentous. In part their influence is due to the direct heat-carrying power of the atmosphere; in larger measure it is brought about by the movement of the ocean waters which they induce. Atmospheric air, when deprived of the water which it ordinarily contains, has very little heat-containing capacity. Practically nearly all the power of conveying heat which it possesses is due to the vapour of water which it contains. By virtue of this moisture the winds do a good deal to transfer heat from the tropical or superheated portion of the earth's surface to the circumpolar or underheated realms. At first, the relatively cool air which journeys toward the equator along the surface of the sea constantly gains in heat, and in that process takes up more and more water, for precisely the same reason that causes anything to dry more rapidly in air which has been warmed next a fire. The result is that before it begins to ascend in the tropical updraught, being much moisture-laden, the atmosphere stores a good deal of heat. As it rises, rarefies, and cools, the moisture descends in the torrential rains which ordinarily fall when the sun is nearly vertical in the tropical belt.
Here comes in a very interesting principle which is of importance in understanding the nature of great storms, either the continuous storm of the tropics or the local and irregular whirlings which occur in various parts of the earth. When the moisture-laden air starts on its upward journey from the earth it has, by virtue of the watery vapour which it contains, a store of energy which becomes applied to promoting the updraught. As it rises, the moisture in the air gathers together or condenses, and in so doing parts with the heat which caused it to evaporate from the ocean surface. For a given weight of water, the amount of heat required to effect the evaporation is very great; this we may roughly judge by observing what a continuous fire is required to send a pint of water into the state of steam. This energy, when it is released by the condensation of water into rain or snow, becomes again heat, and tends somewhat, as does the fire in the chimney, to accelerate the upward passage of the air. The result is that the water which ascends in the equatorial updraught becomes what we may term fuel to promote this important element in the earth's aërial circulation. Trades and counter trades would doubtless exist but for the efficiency of this updraught, which is caused by the condensation of watery vapour, but the movement would be much less than it is.
Whirling Storms.
In the region near the equator, or near the line of highest temperature, which for various reasons does not exactly follow the equator, there is, as we have noticed, a somewhat continuous uprushing current where the air passes upward through an ascending chimney, which in a way girdles the sea-covered part of the earth. In this region the movements of the air are to a great extent under the control of the great continuous updraught. As we go to the north and south we enter realms where the air at the surface of the earth is, by the heat which it acquires from contact with that surface, more or less impelled upward; but there being no permanent updraught for its escape, it from time to time breaks through the roof of cold air which overlies it and makes a temporary channel of passage. Going polarward from the equator, we first encounter these local and temporary upcastings of the air near the margin of the tropical belt. In these districts, at least over the warmer seas, during the time of the year when it is midsummer, and in the regions where the trade winds are not strong enough to sweep the warm and moisture-laden air down to the equatorial belt, the upward tending strain of the atmosphere next the earth often becomes so strong that the overlying air is displaced, forming a channel through which the air swiftly passes. As the moisture condenses in the way before noted, the energy set free serves to accelerate the updraught, and a hurricane is begun. At first the movement is small and of no great speed, but as the amount of air tending upward is likely to be great, as is also the amount of moisture which it contains, the aërial chimney is rapidly enlarged, and the speed of the rising air increased. The atmosphere next the surface of the sea flows in toward the channel of escape; its passage is marked by winds which are blowing toward the centre. On the periphery of the movement the particles move slowly, but as they win their way toward the centre they travel with accelerating velocity. On the principle which determines the whirling movement of the water escaping through a hole in the bottom of a basin, the particles of the air do not move on straight lines toward the centre, but journey in spiral paths, at first along the surface, and then ascending.
We have noted the fact that in a basin of water the direction of the whirling is what we may term accidental—that is, dependent on conditions so slight that they elude our observation—but in hurricanes a certain fact determines in an arbitrary way the direction in which the spin shall take place. As soon as such a movement of the air attains any considerable diameter, although in its beginning it may have spun in a direction brought about by local accidents, it will be affected by the diverse rates of travel, by virtue of the earth's rotation, of the air on its equatorial and polar sides. On the equatorial side this air is moving more rapidly than it is on the polar side. By observing the water passing from a basin this principle, with a few experiments, can be made plain. The result is to cause these great whirlwinds of the hurricanes of higher latitudes to whirl round from right to left in the northern hemisphere and in the reverse way in the southern. The general system of the air currents still further affects these, as other whirling storms, by driving their centres or chimneys over the surface of the earth. The principle on which this is done may be readily understood by observing how the air shaft above a chimney, through which we may observe the smoke to rise during a time of calm, is drawn off to one side by the slight current which exists even when we feel no wind; it may also be discerned in the little dust whirls which form in the streets on a summer day when the air is not much disturbed. While they spin they move on in the direction of the air drift. In this way a hurricane originating in the Gulf of Mexico may gradually journey under the influence of the counter trades across the Antilles, or over southern Florida, and thence pursue a devious northerly course, generally near the Atlantic coast and in the path of the Gulf Stream, until it has travelled a thousand miles or more toward the North Atlantic. The farther it goes northward the less effectively it is fed with warm and moisture-laden air, the feebler its movement becomes, until at length it is broken up by the variable winds which it encounters.
A very interesting and, from the point of view of the navigator, important peculiarity of these whirls is that at their centre there is a calm, similar in origin and nature to the calm under the equator between the trade-wind belts. Both these areas are in the field where the air is ascending, and therefore at the surface of the earth does not affect the sails of ships, though if men ever come to use flying machines and sail through the tropics at a good height above the sea it will be sensible enough. The difference between the doldrum of the equator and that of the hurricane, besides their relative areas, is that one is a belt and the other a disk. If the seafarer happens to sail on a path which leads him through the hurricane centre, he will first discern, as from the untroubled air and sea he approaches the periphery of the storm, the horizon toward the disturbance beset by troubled clouds, all moving in one direction. Entering beneath this pall, he finds a steadily increasing wind, which in twenty miles of sailing may, and in a hundred miles surely will, compel him to take in all but his storm sails, and is likely to bring his ship into grave peril. The most furious winds the mariner knows are those which he encounters as he approaches the still centre. These trials are made the more appalling by the fact that in the furious part of the whirl the rain, condensing from the ascending air, falls in torrents, and the electricity generated in the condensation gives rise to vivid lightning. If the storm-beset ship can maintain her way, in a score or two of miles of journey toward the centre, generally very quickly, it passes into the calm disk, where the winds, blowing upward, cease to be felt. In this area the ship is not out of danger, for the waves, rolling in from the disturbed areas on either side, make a torment of cross seas, where it is hard to control the movements of a sailing vessel because the impulse of the winds is lost. Passing through this disk of calm, the ship re-encounters in reverse order the furious portion of the whirl, afterward the lessening winds, until it escapes again into the airs which are not involved in the great torment.
In the old days, before Dove's studies of storms had shown the laws of hurricane movement, unhappy shipmasters were likely to be caught and retained in hurricanes, and to battle with them for weeks until their vessels were beaten to pieces. Now the "Sailing Directions," which are the mariner's guide, enable him, from the direction of the winds and the known laws of motion of the storm centre, to sail out of the danger, so that in most cases he may escape calamity. It is otherwise with the people who dwell upon the land over which these atmospheric convulsions sweep. Fortunately, where these great whirlwinds trespass on the continent, they quickly die out, because of the relative lack of moisture which serves to stimulate the uprush which creates them. Thus in their more violent forms hurricanes are only felt near the sea, and generally on islands and peninsulas. There the hurricane winds, by the swiftness of their movement, which often attains a speed of a hundred miles or more, apply a great deal of energy to all obstacles in their path. The pressure thus produced is only less destructive than that which is brought about by the tornadoes, which are next to be described.
There is another effect from hurricanes which is even more destructive to life than that caused by the direct action of the wind. In these whirlings great differences in atmospheric pressure are brought about in contiguous areas of sea. The result is a sudden elevation in the level of one part of the water. These disturbances, where the shore lands are low and thickly peopled, as is the case along the western coast of the Bay of Bengal, may produce inundations which are terribly destructive to life and property. They are known also in southern Florida and along the islands of the Caribbean, but in that region are not so often damaging to mankind.
Fortunately, hurricanes are limited to a very small part of the tropical district. They occur only in those regions, on the eastern faces of tropical lands, where the general westerly set of the winds favours the accumulation of great bodies of very warm, moist air next the surface of the sea. The western portion of the Gulf of Mexico and the Caribbean, the Bay of Bengal, and the southeastern portion of Asia are especially liable to their visitations. They sometimes develop, though with less fury, in other parts of the tropics. On the western coast of South America and Africa, where the oceans are visited by the dry land winds, and where the waters are cooled by currents setting in from high latitudes, they are unknown.
Only less in order of magnitude than the hurricanes are the circular storms known as cyclones. These occur on the continents, especially where they afford broad plains little interrupted by mountain ranges. They are particularly well exhibited in that part of North America north of Mexico and south of Hudson Bay. Like the hurricanes, they appear to be due to the inrush of relatively warm air entering an updraught which had been formed in the overlying, cooler portions of the atmosphere. They are, however, much less energetic, and often of greater size than the hurricane whirl. The lack of energy is probably due to the comparative dryness of the air. The greater width of the ascending column may perhaps be accounted for by the fact that, originating at a considerable height above the sea, they have a less thickness of air to break through, and so the upward setting column is readily made broad.