CHAPTER II.
ways and means of studying nature.

It is desirable that the student of Nature keep well in mind the means whereby he is able to perceive what goes on in the world about him. He should understand something as to the nature of his senses, and the extent to which these capacities enable him to discern the operations of Nature. Man, in common with his lower kindred, is, by the mechanism of the body, provided with five somewhat different ways by which he may learn something of the things about him. The simplest of these capacities is that of touch, a faculty that is common to the general surface of the body, and which informs us when the surface is affected by contact with some external object. It also enables us to discern differences of temperature. Next is the sense of taste, which is limited to the mouth and the parts about it. This sense is in a way related to that of touch, for the reason that it depends on the contact of our body with material things. Third is the sense of smell, so closely related to that of taste that it is difficult to draw the line between the two. Yet through the apparatus of the nose we can perceive the microscopically small parts of matter borne to us through the air, which could not be appreciated by the nerves of the mouth. Fourth in order of scope comes the hearing, which gives us an account of those waves of matter that we understand as sound. This power is much more far ranging than those before noted; in some cases, as in that of the volcanic explosions from the island of Krakatoa, in the eruption of 1883, the convulsions were audible at the distance of more than a thousand miles away. The greater cannon of modern days may be heard at the distance of more than a hundred miles, so that while the sense of touch, taste, and smell demand contact with the bodies which we appreciate, hearing gives us information concerning objects at a considerable distance. Last and highest of the senses, vastly the most important in all that relates to our understanding of Nature, is sight, or the capacity which enables us to appreciate the movement of those very small waves of ether which constitute light. The eminent peculiarity of sight is that it may give us information concerning things which are inconceivably far away; it enables us to discern the light of suns probably millions of times as remote from us as is the centre of our own solar system.

Although much of the pleasure which the world affords us comes through the other senses, the basis of almost all our accurate knowledge is reported by sight. It is true that what we have observed with our eyes may be set forth in words, and thus find its way to the understanding through the ears; also that in many instances the sense of touch conveys information which extends our perceptions in many important ways; but science rests practically on sight, and on the insight that comes from the training of the mind which the eyes make possible.

The early inquirers had no resources except those their bodies afforded; but man is a tool-making creature, and in very early days he began to invent instruments which helped him in inquiry. The earliest deliberate study was of the stars. Science began with astronomy, and the first instruments which men contrived for the purpose of investigation were astronomical. In the beginning of this search the stars were studied in order to measure the length of the year, and also for the reason that they were supposed in some way to control the fate of men. So far as we know, the first pieces of apparatus for this purpose were invented in Egypt, perhaps about four thousand years before the Christian era. These instruments were of a simple nature, for the magnifying glass was not yet contrived, and so the telescope was impossible. They consisted of arrangements of straight edges and divided circles, so that the observers, by sighting along the instruments, could in a rough way determine the changes in distance between certain stars, or the height of the sun above the horizon at the various seasons of the year. It is likely that each of the great pyramids of Egypt was at first used as an observatory, where the priests, who had some knowledge of astronomy, found a station for the apparatus by which they made the observations that served as a basis for casting the horoscope of the king.

In the progress of science and of the mechanical invention attending its growth, a great number of inventions have been contrived which vastly increase our vision and add inconceivably to the precision it may attain. In fact, something like as much skill and labour has been given to the development of those inventions which add to our learning as to those which serve an immediate economic end. By far the greatest of these scientific inventions are those which depend upon the lens. By combining shaped bits of glass so as to control the direction in which the light waves move through them, naturalists have been able to create the telescope, which in effect may bring distant objects some thousand times nearer to view than they are to the naked eye; and the microscope, which so enlarges minute objects as to make them visible, as they were not before. The result has been enormously to increase our power of vision when applied to distant or to small objects. In fact, for purposes of learning, it is safe to say that those tools have altogether changed man's relation to the visible universe. The naked eye can see at best in the part of the heavens visible from any one point not more than thirty thousand stars. With the telescope somewhere near a hundred million are brought within the limits of vision. Without the help of the microscope an object a thousandth of an inch in diameter appears as a mere point, the existence of which we can determine only under favourable circumstances. With that instrument the object may reveal an extended and complicated structure which it may require a vast labour for the observer fully to explore.

Next in importance to the aid of vision above noted come the scientific tools which are used in weighing and measuring. These balances and gauges have attained such precision that intervals so small as to be quite invisible, and weights as slight as a ten-thousandth of a grain, can be accurately measured. From these instruments have come all those precise examinations on which the accuracy of modern science intimately depends. All these instruments of precision are the inventions of modern days. The simplest telescopes were made only about two hundred and fifty years ago, and the earlier compound microscopes at a yet later date. Accurate balances and other forms of gauges of space, as well as good means of dividing time, such as our accurate astronomical clocks and chronometers, are only about a century old. The instruments have made science accurate, and have immensely extended its powers in nearly all the fields of inquiry.

Although the most striking modern discoveries are in the field which was opened to us by the lens in its manifold applications, it is in the chemist's laboratory that we find that branch of science, long cultivated, but rapidly advanced only within the last two centuries, which has done the most for the needs of man. The ancients guessed that the substances which make up the visible world were more complicated in their organization than they appear to our vision. They even suggested the great truth that matter of all kinds is made up of inconceivably small indivisible bits which they and we term atoms. It is likely that in the classic days of Greece men began to make simple experiments of a chemical nature. A century or two after the time of Mohammed, the Arabians of his faith, a people who had acquired Greek science from the libraries which their conquests gave them, conducted extensive experiments, and named a good many familiar chemical products, such as alcohol, which still bears its Arabic name.

These chemical studies were continued in Europe by the alchemists, a name also of Arabic origin, a set of inquirers who were to a great extent drawn away from scientific studies by vain though unending efforts to change the baser metals into gold and silver, as well as to find a compound which would make men immortal in the body. By the invention of the accurate balance, and by patient weighing of the matters which they submitted to experiment, by the invention of hypotheses or guesses at truth, which were carefully tested by experiment, the majestic science of modern chemistry has come forth from the confused and mystical studies of the alchemists. We have learned to know that there are seventy or more primitive or apparently unchangeable elements which make up the mass of this world, and probably constitute all the celestial spheres, and that these elements in the form of their separate atoms may group themselves in almost inconceivably varied combinations. In the inanimate realm these associations, composed of the atoms of the different substances, forming what are termed molecules, are generally composed of but few units. Thus carbonic-acid gas, as it is commonly called, is made up of an aggregation of molecules, each composed of one atom of carbon and two of oxygen; water, of two atoms of hydrogen and one of oxygen; ordinary iron oxide, of two atoms of iron and three of oxygen. In the realm of organic life, however, these combinations become vastly more complicated, and with each of them the properties of the substance thus produced differ from all others. A distinguished chemist has estimated that in one group of chemical compounds, that of carbon, it would be possible to make such an array of substances that it would require a library of many thousand ordinary volumes to contain their names alone.