What we may term the littoral or shore zone of the sea occupies a belt of prevailingly shallow water, varying in width from a few score to a few hundred miles. Where the bottom descends steeply from the coast, where there are no strong off-shore setting currents, and where the region is not near the mouth of a large river which bears a great tide of sediment to the sea, the land waste may not affect the bottom for more than a mile or two from the shore. Where these conditions are reversed, the débris from the air-covered region may be found three or four hundred miles from the coast line. It should also be noted that the incessant up-and-down goings of the land result in a constant change in the position of the coast line, and consequently in the extension of the land sediment, in the course of a few geological periods over a far wider field of sea bottom than that to which they would attain if the shores remained steadfast.
It is characteristic of the sediments deposited within the influence of the continental detritus that they vary very much in their action, and that this variation takes place not only horizontally along the shores in the same stratum, but vertically, in the succession of the beds. It also may be traced down the slope from the coast line to deep water. Thus where all the débris comes from the action of the waves, the deposits formed from the shore outwardly will consist of coarse materials, such as pebbles near the coast, of sand in the deeper and remoter section, and of finer silt in the part of the deposit which is farthest out. With each change in the level of the coast line the position of these belts will necessarily be altered. Where a great river enters the sea, the changes in the volume of sediment which it from time to time sends forth, together with the alternations in the position of its point of discharge, led to great local complexities in the strata. Moreover, the turbid water sent forth by the stream may, as in the case of the tide from the Amazon, be drifted for hundreds of miles along the coast line or into the open sea.
The most important variations which occur in the deposits of the littoral zone are brought about by the formations of rocks more or less composed of limestone. Everywhere the sea is, as compared with lake waters, remarkably rich in organic life. Next the shore, partly because the water is there shallow, but also because of its relative warmth and the extent to which it is in motion, organic life, both that of animals and plants, commonly develops in a very luxuriant way. Only where the bottom is composed of drifting sands, which do not afford a foothold for those species which need to rest upon the shore, do we fail to find that surface thickly tenanted with varied forms. These are arranged according to the depth of the bottom. The species of marine plants which are attached to fixed objects are limited to the depth within which the sunlight effectively penetrates the water; in general, it may be said that they do not extend below a depth of one hundred feet. The animal forms are distributed, according to their kinds, over the floor, but few species having the capacity to endure any great range in the pressure of the sea water. Only a few forms, indeed, extend from low tide to the depth of a thousand feet.
The greatest development of organic life, the realm in which the largest number of species occur, and where their growth is most rapid, lies within about a hundred feet of the low-tide level. Here sunlight, warmth, and motion in the water combine to favour organic development. It is in this region that coral reefs and other great accumulations of limestone, formed from the skeletons of polyps and mollusks, most abundantly occur. These deposits of a limy nature depend upon a very delicate adjustment of the conditions which favour the growth of certain creatures; very slight geographic changes, by inducing movements of sand or mud, are apt to interrupt their formation, bringing about a great and immediate alteration in the character of the deposits. Thus it is that where geologists find considerable fields of rock, where limestones are intercalated with sandstones and deposits of clay, they are justified in assuming that the strata were laid down near some ancient shore. In general, these coast deposits become more and more limy as we go toward the tropical realms, and this for the reason that the species which secrete large amounts of lime are in those regions most abundant and attain the most rapid growth. The stony polyps, the most vigorous of the limestone makers, grow in large quantities only in the tropical realm, or near to it, where ocean streams of great warmth may provide the creatures with the conditions of temperature and food which they need.
As we pass from the shore to the deeper sea, the share of land detritus rapidly diminishes until, as before remarked, at the distance of five hundred miles from the coast line, very little of that waste, except that from volcanoes, attains the bottom of the sea. By far the larger part of the contributions which go to the formation of these deep-sea strata come from organic remains, which are continually falling upon the sea floor. In part, this waste is derived from creatures which dwell upon the bottom; in considerable measure, however, it is from the dead bodies of those forms which live near the surface of the sea, and which when dying sink slowly through the intermediate realm to the bottom.
Owing to the absence of sunlight, the prevailingly cold water of the deeper seas, and the lack of vegetation in those realms, the growth of organic forms on the deep-sea floor is relatively slow. Thus it happens that each shell or other contribution to the sediment lies for some time on the bottom before it is buried. While in this condition it is apt to be devoured by some of the many species which dwell on the bottom and subsist from the remains of animals and plants which they find there. In all cases the fossilization of any form depends upon the accumulation of sediment before the processes of destruction have overtaken them, and among these processes we must give the first place to the creatures which subsist on shells, bones, or other substances of like nature which find their way to the ocean floor. In the absolute darkness, the still water, and the exceeding cold of the deeper seas, animals find difficult conditions for development. Moreover, in this deep realm there is no native vegetation, and, in general, but little material of this nature descends to the bottom from the surface of the sea. The result is, the animals have to subsist on the remains of other animals which at some step in the succession have obtained their provender from the plants which belong on the surface or in the shallow waters of the sea. This limitation of the food supply causes the depths of the sea to be a realm of continual hunger, a region where every particle of organic matter is apt to be seized upon by some needy creature.
In consequence of the fact that little organic matter on the deeper sea floors escapes being devoured, the most of the material of this nature which goes into strata enters that state in a finely divided condition. In the group of worms alone—forms which in a great diversity of species inhabit the sea floor—we find creatures which are specially adapted to digesting the débris which gathers on the sea bottom. Wandering over this surface, much in the manner of our ordinary earthworms, these creatures devour the mud, voiding the matter from their bodies in a yet more perfectly divided form. Hence it comes about that the limestone beds, so commonly formed beneath the open seas, are generally composed of materials which show but few and very imperfect fossils. Studying any series of limestone beds, we commonly find that each layer, in greater or less degree, is made up of rather massive materials, which evidently came to their place in the form of a limy mud. Very often this lime has crystallized, and thus has lost all trace of its original organic structure.
One of the conspicuous features which may be observed in any succession of limestone beds is the partings or divisions into layers which occur with varied frequency. Sometimes at vertical intervals of not more than one or two inches, again with spacings of a score of feet, we find divisional planes, which indicate a sudden change in the process of rock formation. The lime disappears, and in place of it we have a thin layer of very fine detritus, which takes on the form of a clay. Examining these partings with care, we observe that on the upper surface on the limestone the remains of the animal which dwelt on the ancient sea floor are remarkably well preserved, they having evidently escaped the effect of the process which reduced their ancestors, whose remains constitute the layer, to mud. Furthermore, we note that the shaly layer is not only lacking in lime, but commonly contains no trace of animals such as might have dwelt on the bottom. The fossils it bears are usually of species which swam in the overlying water and came to the bottom after death. Following up through the layer of shale, we note that the ordinary bottom life gradually reappears, and shortly becomes so plentiful that the deposit resumes the character which it had before the interruption began. Often, however, we note that the assemblage of species which dwelt on the given area of sea floor has undergone a considerable change. Forms in existence in the lower layer may be lacking in the upper, their place being taken by new varieties.
So far the origin of these divisional planes in marine deposits has received little attention from geologists; they have, indeed, assumed that each of these alterations indicates some sudden disturbance of the life of the sea floors. They have, however, generally assumed that the change was due to alterations in the depth of the sea or in the run of ocean currents. It seems to the writer, however, that while these divisions may in certain cases be due to the above-mentioned and, indeed, to a great variety of causes, they are in general best to be explained by the action of earthquakes. Water being an exceedingly elastic substance, an earthquake passes through it with much greater speed than it traverses the rocks which support the ocean floor. The result is that, when the fluid and solid oscillate in the repeated swingings which a shock causes, they do not move together, but rub over each other, the independent movements having the swing of from a few inches to a foot or two in shocks of considerable energy.