When the sea bottom and the overlying water, vibrating under the impulse of an earthquake shock, move past each other, the inevitable result is the formation of muddy water; the very fine silt of the bottom is shaken up into the fluid, which afterward descends as a sheet to its original position. It is a well-known fact that such muddying of water, in which species accustomed to other conditions dwell, inevitably leads to their death by covering their breathing organs and otherwise disturbing the delicately balanced conditions which enable them to exist. We find, in fact, that most of the tenants of the water, particularly the forms which dwell upon the bottom, are provided with an array of contrivances which enable them to clear away from their bodies such small quantities of silt as may inconvenience them. Thus, in the case of our common clam, the breathing organs are covered with vibratory cilia, which, acting like brooms, sweep off any foreign matter which may come upon their surfaces. Moreover, the creature has a long, double, spoutlike organ, which it can elevate some distance above the bottom, through which it draws and discharges the water from which it obtains food and air. Other forms, such as the crinoids, or sea lilies, elevate the breathing parts on top of tall stems of marvellous construction, which brings those vital organs at the level, it may be, of three or four feet above the zone of mud. In consequence of the peculiar method of growth, the crinoids often escape the damage done by the disturbance of the bottom, and thus form limestone beds of remarkable thickness; sometimes, indeed, we find these layers composed mainly of crinoidal remains, which exhibit only slight traces of partings such as we have described, being essentially united for the depth of ten or twenty feet. Where the layers have been mainly accumulated by shellfish, their average thickness is less than half a foot.
When we examine the partitions between the layers of limestone, we commonly find that, however thin, they generally extend for an indefinite distance in every direction. The writer has traced some of these for miles; never, indeed, has he been able to find where they disappeared. This fact makes it clear that the destruction which took place at the stage where these partings were formed was widespread; so far as it was due to earthquake shocks, we may fairly believe that in many cases it occurred over areas which were to be measured by tens of thousands of square miles. Indeed, from what we know of earthquake shocks, it seems likely that the devastation may at times have affected millions of square miles.
Another class of accidents connected with earthquakes may also suddenly disturb the mud on the sea bottom. When, as elsewhere noted, a shock originates beneath the sea, the effect is suddenly to elevate the water over the seat of the jarring and the regions thereabouts to the height of some feet. This elevation quickly takes the shape of a ringlike wave, which rolls off in every direction from its point of origin. Where the sea is deep, the effect of this wave on the bottom may be but slight; but as the undulation attains shallower water, and in proportion to the shoaling, the front of the surge is retarded in its advance by the friction of the bottom, while the rear part, being in deeper water, crowds upon the advancing line. The action is precisely that which has been described as occurring in wind-made waves as they approach the beach; but in this last-named group of undulations, because of the great width of the swell, the effect of the shallowing is evident in much deeper water. It is likely that at the depth of a thousand feet the passing of one of these vast surges born of earthquakes may so stir the mud of the sea floor as to bring about a widespread destruction of life, and thus give rise to many of the partitions between strata.
If we examine with the microscope the fine-grained silts which make up the shaly layers between limestones, we find the materials to be mostly of inorganic origin. It is hard to trace the origin of the mineral matter which it contains; some of the fragments are likely to prove of Volcanic origin; others, bits of dust from meteorites; yet others, dust blown from the land, which may, as we know, be conveyed for any distance across the seas. Mingled with this sediment of an inorganic origin we almost invariably find a share of organic waste, derived not from creatures which dwelt upon the bottom, but from those which inhabited the higher-lying waters. If, now, we take a portion of the limestone layer which lies above or below the shale parting, and carefully dissolve out with acids the limy matter which it contains, we obtain a residuum which in general character, except so far as the particles may have been affected by the acid, is exactly like the material which forms the claylike partition. We are thus readily led to the conclusion that on the floors of the deeper seas there is constantly descending, in the form of a very slow shower, a mass of mineral detritus. Where organic life belonging to the species which secrete hard shells or skeletons is absent, this accumulation, proceeding with exceeding slowness, gradually accumulates layers, which take on a shaly character. Where limestone-making animals abound, they so increase the rate of deposition that the proportion of the mineral material in the growing strata is very much reduced; it may, indeed, become as small as one per cent of the mass. In this case we may say that the deposit of limestone grew a hundred times as fast as the intervening beds of shale.
The foregoing considerations make it tolerably clear that the sea floor is in receipt of two diverse classes of sediment—those of a mineral and those of an organic origin. The mineral, or inorganic, materials predominate along the shores. They gradually diminish in quantity toward the open sea, where the supply is mainly dependent on the substances thrown forth from volcanoes, on pumice in its massive or its comminuted form—i.e., volcanic dust, states of lava in which the material, because of the vesicles which it contains, can float for ages before it comes to rest on the sea bottom. Variations in the volcanic waste contributed to the sea floor may somewhat affect the quantity of the inorganic sediments, but, as a whole, the downfalling of these fragments is probably at a singularly uniform rate. It is otherwise with the contributions of sediment arising from organic forms. This varies in a surprising measure. On the coral reefs, such as form in the mid oceans, the proportion of matter which has not come into the accumulation through the bodies of animals and plants may be as small as one tenth of one per cent, or less. In the deeper seas, it is doubtful whether the rate of animal growth is such as to permit the formation of any beds which have less than one half of their mass made up of materials which fell through the water.
In certain areas of the open seas the upper part of the water is dwelt in by a host of creatures, mostly foraminifera, which extract limestone from the water, and, on dying, send their shells to the bottom. Thus in the North Atlantic, even where the sea floor is of great depth beneath the surface, there is constantly accumulating a mass of limy matter, which is forming very massive limestone strata, somewhat resembling chalk deposits, such as abundantly occur in Great Britain, in the neighbouring parts of Europe, in Texas, and elsewhere. Accumulations such as this, where the supply is derived from the surface of the water, are not affected by the accidents which divide beds made on the bottom in the manner before described. They may, therefore, have the singularly continuous character which we note in the English chalk, where, for the thickness of hundreds of feet, we may have no evident partitions, except certain divisions, which have evidently originated long after the beds were formed.
We have already noted the fact that, while the floors of the deeper seas appear to lack mountainous elevations, those arising from the folding of strata, they are plentifully scattered over with volcanic cones. We may therefore suppose that, in general, the deposits formed on the sea floor are to a great extent affected by the materials which these vents cast forth. Lava streams and showers represent only a part of the contributions from volcanoes, which finally find their way to the bottom. In larger part, the materials thrown forth are probably first dissolved in the water and then taken up by the organic species; only after the death of these creatures does the waste go to the bottom. As hosts of these creatures have no solid skeleton to contribute to the sea floor, such mineral matter as they may obtain is after their death at once restored to the sea.
Not only does the contribution of organic sediment diminish in quantity with the depth which is attained, but the deeper parts of the ocean bed appear to be in a condition where no accumulations of this nature are made, and this for the reason that the water dissolves the organic matter more rapidly than it is laid down. Thus in place of limestone, which would otherwise form, we have only a claylike residuum, such as is obtained when we dissolve lime rocks in acids. This process of solution, by which the limy matter deposited on the bottom is taken back into the water, goes on everywhere, but at a rate which increases with the depth. This increase is due in part to the augmentation of pressure, and in part to the larger share of carbonic dioxide which the water at great depths holds. The result is, that explorations with the dredge seem to indicate that on certain parts of the deeper sea floors the rocks are undergoing a process of dissolution comparable to that which takes place in limestone caverns. So considerable is the solvent work that a large part of the inorganic waste appears to be taken up by the waters, so as to leave the bottom essentially without sedimentary accumulations. The sea, in a word, appears to be eating into rocks which it laid down before the depression attained its present great depth.
We should here note something of the conditions which determine the supply of food which the marine animals obtain. First of all, we may recur to the point that the ocean waters appear to contain something of all the earth materials which do not readily decompose when they are taken into the state of solution. These mineral substances, including the metals, are obtained in part from the lands, through the action of the rain water and the waves, but perhaps in larger share from the volcanic matter which, in the form of floating lava, pumice, or dust, is plentifully delivered to the sea. Except doubtfully, and at most in a very small way, this chemical store of the sea water can not be directly taken into the structures of animals; it can only be immediately appropriated by the marine plants. These forms can only develop in that superficial realm of the seas which is penetrated by the sunlight, or say within the depth of five hundred feet, mostly within one hundred feet of the surface, about one thirtieth of the average, and about one fiftieth of the maximum ocean depth. On this marine plant life, and in a small measure on the vegetable matter derived from the land, the marine animals primarily depend for their provender. Through the conditions which bring about the formation of Sargassum seas, those areas of the ocean where seaweeds grow afloat, as well as by the water-logging and weighting down of other vegetable matter, some part of the plant remains is carried to the sea floor, even to great depths; but the main dependence of the deep-sea forms of animals is upon other animal forms, which themselves may have obtained their store from yet others. In fact, in any deep-sea form we might find it necessary to trace back the food by thousands of steps before we found the creature which had access to the vegetable matter. It is easy to see how such conditions profoundly limit the development of organic being in the abysm of the ocean.
The sedentary animals, or those which are fixed to the sea bottom—a group which includes the larger part of the marine species—have to depend for their sustenance on the movement of the water which passes their station. If the seas were perfectly still, none of these creatures except the most minute could be fed; therefore the currents of the ocean go far by their speed to determine the rate at which life may flourish. At great depths, as we have seen, these movements are practically limited to that which is caused by the slow movement which the tide brings about. The amount of this motion is proportional to the depth of the sea; in the deeper parts, it carries the water to and fro twice each day for the distance of about two hundred and fifty feet. In the shallower water this motion increases in proportion to the shoaling, and in the regions near the shores the currents of the sea which, except the massive drift from the poles, do not usually touch the bottom, begin to have their influence. Where the water is less than a hundred feet in depth, each wave contributes to the movement, which attains its maximum near the shore, where every surge sweeps the water rapidly to and fro. It is in this surge belt, where the waves are broken, that marine animals are best provided with food, and it is here that their growth is most rapid. If the student will obtain a pint of water from the surf, he will find that it is clouded by fragments of organic matter, the quantity in a pound of the fluid often amounting to the fiftieth part of its weight. He will thus perceive that along the shore line, though the provision of victuals is most abundant, the store is made from the animals and plants which are ground up in the mill. In a word, while the coast is a place of rapid growth, it is also a region of rapid destruction; only in the case of the coral animals, which associate their bodies with a number of myriads in large and elaborately organized communities, do we find animals which can make such head against the action of the waves that they can build great deposits in their realm.