. In the latest paper cited Nicholson has found it necessary to give the theory a more complicated form, still, however, representing the ratio of energy to frequency by a simple function of whole numbers.

The excellent agreement between the calculated and observed values of the ratios between the wave-lengths in question seems a strong argument in favour of the validity of the foundation of Nicholson’s calculations. Serious objections, however, may be raised against the theory. These objections are intimately connected with the problem of the homogeneity of the radiation emitted. In Nicholson’s calculations the frequency of lines in a line-spectrum is identified with the frequency of vibration of a mechanical system in a distinctly indicated state of equilibrium. As a relation from Planck's theory is used, we might expect that the radiation is sent out in quanta; but systems like those considered, in which the frequency is a function of the energy, cannot emit a finite amount of a homogeneous radiation; for, as soon as the emission of radiation is started, the energy and also the frequency of the system are altered. Further, according to the calculation of Nicholson, the systems are unstable for some modes of vibration. Apart from such objections—which may be only formal (see [p. 23])—it must be remarked, that the theory in the form given does not seem to be able to account for the well-known laws of Balmer and Rydberg connecting the frequencies of the lines in the line-spectra of the ordinary elements.

It will now be attempted to show that the difficulties in question disappear if we consider the problems from the point of view taken in this paper. Before proceeding it may be useful to restate briefly the ideas characterizing the calculations on [p. 5]. The principal assumptions used are:

(1) That the dynamical equilibrium of the systems in the stationary states can be discussed by help of the ordinary mechanics, while the passing of the systems between different stationary states cannot be treated on that basis.

(2) That the latter process is followed by the emission of a homogeneous radiation, for which the relation between the frequency and the amount of energy emitted is the one given by Planck's theory.

The first assumption seems to present itself; for it is known that the ordinary mechanics cannot have an absolute validity, but will only hold in calculations of certain mean values of the motion of the electrons. On the other hand, in the calculations of the dynamical equilibrium in a stationary state in which there is no relative displacement of the particles, we need not distinguish between the actual motions and their mean values. The second assumption is in obvious contrast to the ordinary ideas of electrodynamics, but appears to be necessary in order to account for experimental facts.

In the calculations on [page 5] we have further made use of the more special assumptions, viz. that the different stationary states correspond to the emission of a different number of Planck’s energy-quanta, and that the frequency of the radiation emitted during the passing of the system from a state in which no energy is yet radiated out to one of the stationary states, is equal to half the frequency of revolution of the electron in the latter state. We can, however (see [§3]), also arrive at the expressions (3) for the stationary states by using assumptions of somewhat different form. We shall, therefore, postpone the discussion of the special assumptions, and first show how by the help of the above principal assumptions, and of the expressions (3) for the stationary states, we can account for the line-spectrum of hydrogen.

§2. Emission of Line-spectra.

Spectrum of Hydrogen.—General evidence indicates that an atom of hydrogen consists simply of a single electron rotating round a positive nucleus of charge