In the preceding we have only considered systems which possess an axis of symmetry around which the electrons are assumed to rotate in circular orbits. In systems such as the molecule CH4 we cannot, however, assume the existence of an axis of symmetry, and consequently we must in such cases omit the assumption of exactly circular orbits. The configuration suggested by the theory for a molecule of CH4 is of the ordinary tetrahedron type; the carbon nucleus surrounded by a very small ring of two electrons being situated in the centre, and a hydrogen nucleus in every corner. The chemical bonds are represented by
rings of
electrons each rotating round the lines connecting the centre and the corners. The closer discussion of such questions, however, is far out of the range of the present theory.
Concluding remarks.
In the present paper an attempt has been made to develop a theory of the constitution of atoms and molecules on the basis of the ideas introduced by Planck in order to account for the radiation from a black body, and the theory of the structure of atoms proposed by Rutherford in order to explain the scattering of
-particles by matter.
Planck’s theory deals with the emission and absorption of radiation from an atomic vibrator of a constant frequency, independent of the amount of energy possessed by the system in the moment considered. The assumption of such vibrators, however, involves the assumption of quasi-elastic forces and is inconsistent with Rutherford’s theory, according to which all the forces between the particles of an atomic system vary inversely as the square of the distance apart. In order to apply the main results obtained by Planck it is therefore necessary to introduce new assumptions as to the emission and absorption of radiation by an atomic system.