Map XII. Lowell, 1905.

The next advance was the detection at Flagstaff in 1894 of their canaliform characteristics by my then assistant Mr. Douglass, who in place of the irregular streaks and river-systems of his predecessors found the seas to be crossed by lines as regular and as regularly connected as the canals in the light regions. To him they appeared broad and ill defined, but so habitually did to him the canals in the light areas, while for directness and uniformity the one set showed as geometrically perfect as the other. All the dark maria of the southern hemisphere he found to be laced with them and that they formed a network over the dark regions, counterparting that over the light. Still more significant was the fact that their points of departure coincided with the points of arrival of the bright-region canals, so that the two connected to form in its entirety a single system. After the publication of his results (Lowell Observatory Annals, Volume I, 1895) Schiaparelli identified some of those in the Syrtis with what he had himself seen there in 1888 (Memoria, VI, 1899), though his own had not been sufficiently well seen of him to impress him as canals.

Of other additions to our knowledge since made by the writer the present book treats; as also of the theory they originally suggested to him and which his later observations have only gone to confirm.

CHAPTER IV
THE POLAR CAPS

Almost as soon as magnification gives Mars a disk that disk shows markings, white spots crowning a globe spread with blue-green patches on an orange ground. The smallest telescope is capable of this far-off revelation; while with increased power the picture grows steadily more articulate and full. With a two and a quarter inch glass the writer saw them thirty-five years ago.

After the assurance that markings exist the next thing to arrest attention is that these markings move. The patches of color first made out by the observer are shortly found by him to have shifted in place upon the planet. And this not through mistake on his part but through method in the phenomena; for all do it alike. In orderly rotation the features make their appearance upon the body’s righthand limb (in the telescopic image), travel across the central meridian of the disk and vanish over its lefthand border. One follows another, each rising, culminating and setting in its turn under the observer’s gaze. A constantly progressing panorama passes majestically before his sight, new objects replacing the old with a march so steady and withal so swift that a few minutes will suffice to mark unmistakably the fact of such procession. But for all this ceaseless turning under his gaze, after a certain lapse of time it is evident that the same features are being shown him over again. With such recognition of recurrence comes the first advance toward acquaintance with the Martian world. For that in all their journeying their configuration alters not, proves them permanent in place, part and parcel of the solid surface of that other globe. This surface, then, lies exposed to view and by its turning shows itself subject, like our earth, to the vicissitudes of day and night.

In such self-exposure Mars differs from all the four great planets, Jupiter, Saturn, Uranus and Neptune. Features, indeed, are apparent on the first two of these globes and dimly on the other two as well, but they lack the stability of the Martian markings. They are forever exchanging place. In the case of Jupiter what we see is undoubtedly a cloud-envelop through which occasional glimpses may possibly be caught of a chaotic nucleus below. With Saturn it is the same; and the evidence is that the like is true of Uranus and Neptune. What goes on under their great cloud canopies we can only surmise. With Mars, however, we are not left to imagination in the matter but so far as our means permit can actually observe what there takes place. Except for distance, which, through science, year by year grows less, it is as if we hovered above the planet in a balloon, with its various features spread out to our gaze below.

Attention shows these areographic features to be on hand with punctual precision for their traverse of the disk once every twenty-four hours and thirty-seven minutes. For over two hundred years this has been the case, their untiring revolutions having been watched so well that we know the time they take to the nicety of a couple of hundredths of a second. We thus become possessed of a knowledge of the length of the Martian day and it is not a little interesting to find that it very closely counterparts in duration our own, being only one thirty-fifth the longer of the two. We also find from the course the markings pursue the axis about which they turn; and just as the period of the rotation tells us the length of the Martian day so the tilt of the axis, taken in connection with the form of the orbit, determines the character of the Martian seasons. Here again we confront a curious resemblance in the circumstances of the two planets, for the tilt of the equator to the plane of the orbit is with Mars almost precisely what it is for the Earth. The more carefully the two are measured the closer the similitude becomes. Sir William Herschel made the Martian 28°, Schiaparelli reduced this to 25°, and later determination by the writer puts it nearer 24°. The latter is the one now adopted in the British Nautical Almanac for observers of the planet. This is a very close parallelism indeed; so that in general character the Martian seasons are nearly the counterpart of ours. In length, however, they differ; first because the year of Mars is almost double the length of the terrestrial one and secondly because from the greater ellipticity of Mars’ orbit the seasons are more unequal than is the case with us, some being run through with great haste, others being lingered on a disproportionate time. It is usual on the Earth to consider spring as the period from the vernal equinox, about March 21, to the summer solstice, about June 20; summer as lasting thence to the autumnal equinox; autumn from this latter date, about September 20, to the winter solstice on December 21; and winter from that point on to the next spring equinox again. On this division our seasons in the northern hemisphere last respectively: spring, 91 days; summer, 92 days; autumn, 92 days; and winter, 90 days. On Mars these become, reckoned in our days: spring, 199 days; summer 183 days; autumn, 147 days; and winter, 158 days. If we had counted them in Martian days they would have totaled about one thirty-fifth less in number each.

In its days and seasons, then, Mars is wonderfully like the Earth; except for the length of the year we should hardly know the difference in reckoning of time could we some morning wake up there instead of here. Only in one really unimportant respect should we feel strange; in months we should find ourselves turned topsy-turvy. But lunations have nothing to do with climate nor with the alternation between night and day; and in these two important respects we should certainly feel at home.