Though the axis could be determined by the daily march of any marking and thus the planet’s tropic, temperate and polar regions marked out, the process is made easier by the presence of white patches covering the planet’s poles and known, in consequence, as the polar caps. It is from measures of the patches that the position of the Martian poles has actually been determined. These polar caps are exactly analogous in general position to those which bonnet our own Earth. They reproduce the appearance of the ice and snow of our arctic and antarctic regions seen from space, in a very remarkable manner. In truth they are things of note in more ways than one and would claim precedence on many counts. Priority of recognition, however, alone entitles them to premier consideration. Among the very first of the disk’s detail to be made out by man, they justly demand description first.

With peculiar propriety the polar caps have thus the pas. Not only do they stand first in order of visibility, but they prove to occupy a like position logically when it comes to an explanation of the planet’s present physical state. It is not matter of hazard that the most evident of all the planet’s markings should also be the most fundamental, the fountainhead from which everything else flows. It is of the essence of the planet’s condition and furnishes the key to its comprehension. The steps leading to this conclusion are as interesting as they are cogent. They start at the polar caps’ visibility. For their size first riveted man’s attention and then attention to them disclosed that most vital of the characteristics of the planet’s surface: change.

Just as almost all of the features we note are permanent in place, showing that they belong to the surface, so are they all impermanent in character. Change is the only absolutely unchanging thing except position about the features the planet presents to view. It was in the aspect of the polar caps that this important fact first came to light. Not only did they thus initially instance a general law, they have turned out to make it; for by themselves changing they largely cause change in all the rest. But for a long time they alone exemplified its workings. To Sir William Herschel we owe the first study of their change in aspect. This eminent observer noted that their varying size was subject to a regular rhythmic wax and wane timed to the course of the seasons of the planet’s year. The caps increased in the winter of their hemisphere and decreased in its summer and being situate in opposite hemispheres they did this alternately with pendulum-like precision. His observations were soon abundantly confirmed, for the phenomena take place upon a vast scale and are thus easy of recognition. At their maximum spread the caps cover more than one hundred times as much ground as when they have shrunk to their minimum. In the depth of winter they stretch over much more than the polar zone, coming down to 60° and even 50° of latitude north or south as the case may be, thence melting till by midsummer they span only five or six degrees across.

In this they bear close analogue to the behavior of our own. Ours would show not otherwise were they viewed from the impersonal standpoint of space. Very little telescopic aid suffices to disclose the Martian polar phenomena in this their more salient characteristics and convince an observer of their likeness to those of the earth. Any one may note what is there going on by successive observations of the planet with a three-inch glass. Nor is the change by any means slow. A few days at the proper Martian season, or at most a couple of weeks, produces conspicuous and conclusive alterations in the size of these nightcaps of the planet’s winter sleep. Resembling our own so well they were early surmised to be of like constitution and composed, therefore, of ice and snow. Plausible on its face, this view of them was generally adopted and common sense has held to it ever since. It has encountered, of course, opposition, partly from very proper conservatism, but chiefly from that earth-centred philosophy which has doubted most advances since Galileo’s time, and carbonic acid has been put forward by this school of sceptics to take its place. We shall critically examine both objections; the latter first, because a certain physical fact enables us to dispose of it at once. In casual appearance there is not much to choose between the rival candidates of common sense and uncommon subtlety, water and frozen carbonic acid gas, both being suitably white and both going and coming with the temperature. But, upon closer study, in one point of behavior the two substances act quite unlike, and had half the ingenuity been expended in testing the theory as in broaching it this fact had come to light to the suggestors as it did upon examination to the writer and had served as a touchstone in the case. At pressures of anything like one atmosphere or less carbonic acid passes at once from the solid to the gaseous state. Water, on the other hand, lingers in the intermediate stage of a liquid. Now, as the Martian cap melts it shows surrounded by a deep blue band which accompanies it in its retreat, shrinking to keep pace with the shrinkage in the cap. This is clearly the product of the disintegration since it waits so studiously upon it. The substance composing the cap, then, does not pass instantaneously or anything like it from the solid to the gaseous condition.

This badge of blue ribbon about the melting cap, therefore, conclusively shows that carbonic acid is not what we see and leaves us with the only alternative we know of: water.

CHAPTER V
BEHAVIOR OF THE POLAR CAPS

Assured by physical properties that our visual appearances are quite capable of being what they seem we pass to the phenomena of the cap itself. Like as are the polar caps of the two planets at first regard, upon further study very notable differences soon disclose themselves between the earthly and the Martian ones; and these serve to give us our initial hint of a different state of things over there from that with which we are conversant on Earth.

To begin with, the limits between which they fluctuate are out of all proportion greater on Mars. It is not so much in their maxima that the ice-sheets of the two planets vary. Our own polar caps are much larger than we think; indeed, we live in them a good fraction of the time. Our winter snows are in truth nothing but part and parcel of the polar cap at that season. Now, in the northern hemisphere snow covers the ground at sea-level more or less continuously down to 50° of latitude. It stretches thus far even on the western flanks of the continents, while in the middle of them and on their eastern sides it extends ten degrees farther yet during the depth of winter. So that we have a polar cap which is then ninety degrees across. In our southern hemisphere it is much the same six months later, in the corresponding winter of its year.

On Mars at their winter maxima the polar caps extend over a similar stretch of latitude. They do so, however, unequally. The southern one is considerably the larger. In 1903, 136 days after the winter solstice, in the Martian calendar February 27, it came down in longitude 225° to 44° of latitude and may be taken to have then measured ninety-three degrees across; in 1905, 121 days after the same solstice, it stretched in longitude 235° to latitude 42°, and 158 days later, in longitude 221° to latitude 41°; values which, supposing it to have been round, imply for it a diameter on these occasions of ninety-six and ninety-seven degrees. It was then February 20 and March 10 respectively of the Martian year. These determinations of its size at the two oppositions agree sufficiently well considering the great tilt away from us of the south pole at the time and the horizonward foreshortening of the edge of the snow. It seems from a consensus of the measures to have been some five degrees wider in 1903 than in 1905, which may mean a colder winter preceding the former date. The cap was still apparently without a dark contour in both years, showing that it had not yet begun to melt.