South Polar Cap.
(Lowell Observatory, 1905.)

Less has been learnt of the northern cap. In 1896-1897 when it was similarly presented skirting the other rim of the disk, a gap occurred in the observations corresponding to the time by Martian months between February 24 and March 22. On the former date the cap came down only to latitude 55° in longitude 352°; on the subsequent one and for several days after the latitude of the southern limit of the snow was such as to imply a breadth to it of about eighty degrees. The cap was now bordered by a dark line, proving that melting had already set in. It cannot, however, at its maximum have covered much more country than this, in view of its lesser extent on February 24.

Fair as our knowledge now is of the dimensions of the Martian polar caps at their maxima, we have much more accurate information with regard to their minima, and this, too, was obtained much earlier. That we should first have known their smallest rather than their greatest extent with accuracy may appear surprising, exactly the opposite being our knowledge of our own. It is not, however, so surprising as it appears, inasmuch as it is an inevitable consequence of the planet’s aspect with regard to the sun. When the tilt of the axis inclines one hemisphere toward the sun, that hemisphere’s polar cap must melt and dwindle, while at the same time it is the one best seen, the other being turned away from the sun and therefore largely from us as well; so that even such part of the latter as is illumined lies low down toward the horizon of the disk where a slight change of angle means a great difference in size.

It has thus come about that both the south and the north polar caps have been repeatedly well seen and measured at their minimum; and the measures for different Martian years agree well with one another. For the northern cap six degrees in diameter is about the least value to which it shrinks. The south one becomes even smaller, being usually not more than five degrees across, while in 1894 it actually vanished, a thing unprecedented. Its absence was detected by Douglass at Flagstaff and shortly after the announcement of its disappearance the fact was corroborated by Barnard at the Lick. The position the cap would have occupied was at the time better placed for observation in America than in Europe, inasmuch as the cap is eccentrically situated with regard to the geographic pole and its centre was then well on the side of the disk presented to us while in Europe it was turned away. This, together with the fact that it undoubtedly came and went more than once about this time, accounts for its disappearance not having been recognized there, haze left by it having apparently been mistaken for the cap itself.

North Polar Cap.
(Lowell Observatory, 1905.)

On Earth the minima are much larger. In the northern hemisphere the line of perpetual snow or pack-ice in longitude 50° east runs about on the 80° parallel, including within it the southern end of Franz Joseph Land. Opposite this, in longitude 120° west, above the North American continent, it reaches down lower still to 75°. So that the cap is then from twenty to thirty degrees in diameter. In the southern hemisphere it is even larger. In longitude 170° west the land was found by Ross to be under perpetual snow in latitude 72°. Cook had reached in longitude 107° east an impassable barrier of ice in latitude 70° 23′. The season was then midsummer, January 30. So that we are perhaps justified in considering 71° south as about the average limit of perpetual snow or paleocrystic ice. This would make the southern cap at its minimum thirty-eight degrees across. Pack-ice with open spots extends still farther north. The Pagoda in 1845 was stopped by impenetrable pack-ice in south latitude 68° and the Challenger in 1874 encountered the pack in latitude 65° on the 19th of February, which corresponds about to our 19th of August, the time at which the sea should be most open. The limit of perpetual snow is thus lower in the southern than in the northern hemisphere. Here again, then, the two minima differ, but in the reverse way from what they do on Mars.

From this we perceive that the variations in size of the caps are much more striking on Mars than on the Earth and that these are due chiefly to the difference in the minima, the maxima not varying greatly.

To explain these interesting diversities of behavior in the several polar caps we shall have to go back a little in general physics in order to get a proper take off. It is a curious concomitant of the law of gravity that the amount of heat received by a planet in passing from any point of its path to a point diametrically opposite is always the same no matter what be the eccentricity of the orbit. Thus, a planet has as many calories falling upon it in travelling from its vernal equinox to its autumnal as from the autumnal to the vernal again, although the time taken in the one journey be very different from that of the other. This is due to the fact that the angle swept over by the radius vector, that is, the imaginary bond between it and the sun, is at all points proportional to the amount of heat received; just as it is of the gravity undergone, the two forces radiating into space as the inverse square of the distance. Thus the heat received by a point or a hemisphere, through any orbital angle, is independent of the eccentricity of the orbit.