But it is not independent of the axial tilt. For the force of the sun’s rays is modified by their obliquity. The amount of heat received at any point in consequence of the tilt turns upon the position of the point, and for any hemisphere taken as a whole it depends upon the degree to which the pole is tilted to the source of heat. In consequence of being more squarely presented to its beams, the hemisphere which is directed toward the sun and therefore is passing through its summer season gets far more insolation than that which is at the same time in the depth of its winter. For a tilt of twenty-four degrees, the present received value for the axis of Mars, the two hemispheres so circumstanced get amounts of heat respectively in the proportion of sixty-three to thirty-seven.

But, though the summer and winter insolation thus differ, they are the same for each hemisphere in turn. Consequently the mere amount of heat received cannot be the cause of any differences detected between the respective maxima and minima of the two polar caps. If heat were a substance which could be stored up instead of being a mode of motion, the effect produced would be in accordance with the quantity applied and the two caps would behave alike. As it is the total amount has very little to say in the matter.

Not the amount of heat but the manner in which this heat is made at home is responsible for the difference we observe. Now, though the total amount is the same in passing from the vernal to the autumnal equinox as from the autumnal to the vernal, the time during which it is received in either case varies from one hemisphere to the other. It is summer in the former while it is winter in the latter and the difference in the length of the two seasons due to the eccentricity of the orbit makes a vast difference in the result. Winter affects the maxima, summer the minima, attained. Of these opposite variations presented to us by the two caps, the maxima, the one most difficult to detect, is the easiest to explain, for the difference in the maxima seems to be due to the surpassing length of the antarctic night.

Owing to the eccentricity of the orbital ellipse pursued by Mars and to the present position of the planet’s solstices, the southern hemisphere is farther away from the sun during its winter and is so for a longer time. The seasons are in length, for the northern hemisphere: spring, 199 days; summer, 183 days; autumn, 147 days; and winter, 158 days; while for the southern hemisphere they are: spring, 147 days; summer, 158 days; autumn, 199 days; and winter, 183 days. The arctic polar night is thus 305 of our days long; the antarctic, 382. Thus for 77 more days than happens to its fellow the southern pole never sees the sun. Now, since the total sunlight from equinox to equinox is the same in both hemispheres, its distribution by days must be different. In the southern hemisphere the same amount is crowded into a smaller compass in the proportion of 305 to 382; that being that hemisphere’s relative ratio of days. But since during winter the cap increases, there is a daily excess of accumulation over dissipation of snow and each twenty-four hours must on the average add its tithe to the sum total. Since the northern days are the warmer each adds less than do the southern ones; and furthermore there are fewer of them. On both these scores the amount of the deposition about the northern pole should be less than about the southern one. Consequently, the snow-sheet there should be the less extensive and show a relatively smaller maximum, which explains what we see.

With the minima the action is otherwise. Inasmuch as the greater heat received during the daylight hours by the southern hemisphere is exactly offset by the shortness of its season, it would seem at first as if there could be no difference in the total effect upon the two ice-caps.

But further consideration discloses a couple of factors which might, and possibly do, come in to qualify the action and account for the observed effect. One is that though the total amount of heat received is the same, the manner of its distribution differs in the two hemispheres. In the northern one the time from vernal to autumnal equinox is 382 days against 305 in the southern. Consequently, the average daily heat is then five fourths more intense in the southern hemisphere. Indeed, it is even greater than this and nearer four thirds, because the melting occurs chiefly in the spring and in the first two months of summer when the contrast in length of season between the two hemispheres is at its greatest. Now, a few hotter days might well work more result than many colder ones. And this would be particularly true of Mars where the mean temperature is probably none too much above the freezing-point to start with. Ice consumes so much caloric in the process of turning into any other state, laying it by in the form of latent heat before it can turn into water and then so much more before this water can be converted into steam that a good deal has to be expended on it before getting any perceptible result. Once obtained, however, the heat is retained with like tenacity. So that the process works to double effect! If sufficient heat be received the ice is first melted, then evaporated and finally formed into a layer of humid air, the humidity of which keeps it warm. Dry air is unretentive of heat, moist air the opposite. And for the melting of the ice-cap to proceed most effectively the temperature that laps it about must be as high as possible and kept so as continuously as may be. If between days it be allowed to fall too low at night much caloric must needs be wasted in simply raising the ice again to the melting-point. This a blanket of warm air tends to prevent, and this again is brought about by a few hot days rather than by many colder ones. It is not all the heat received that becomes effective but the surplus heat above a certain point. The gain in continuity of action thus brought about is somewhat like that exhibited between the running of an express and an accommodation train. To reach its destination in a given time the former requires far less power because it does not have to get up speed again after each arrest. Thus the whole effect in melting the snow would be greater upon that hemisphere whose summer happens to be the more intense.

The greater swing in size of the cap most exposed to the effects of the eccentricity is, then, the necessary result of circumstances when the precipitation is not too great to be nearly carried off by the subsequent dissipation. This is the state of things on Mars and the second of the factors above referred to. On the Earth as we have seen the polar caps are somewhat larger at their maximum and very much so at their minimum. Now, this is just what should happen were the precipitation increased. Suppose, for example, that the amount of precipitation were to increase while the amount of summer melting remained the same, and this would be the case if the vapor in the air augmented for one cause or another, and the result of each fresh deposit was locked up in snow. After a certain point the cap would grow in depth rather than in extension; the winter deposit would be thicker but the summer evaporation would remain the same. Now, if this occurred, it is evident that the minimum size of the cap would increase relatively much faster than the maximum, and furthermore, that the relative increase of the minimum in the two caps would be greatest for that which had seasons of extremes. The result we see in the case of the Earth. In the arctic cap, where in consequence of the eccentricity of the orbit the winter is shorter, the maximum is less than in the antarctic and this extra amount of precipitation cannot be wholly done away with in its intenser summer, so that the minimum too is greater there.

We reach, then, this interesting conclusion. We find that eccentricity of orbit by itself not only causes no universal glaciation in the hemisphere which we should incidentally suppose likely to show it, but actually produces the opposite result, in more than offsetting by summer proximity what winter distance brings about. To cause extensive glaciation we must have, in addition to favorable eccentricity, a large precipitation. With these two factors combined we get an ice age, but not otherwise. The result has an important bearing on geologic glacial periods and their explanation.

Once formed, an ice-sheet cools everything about it and chills the climate of its hemisphere. It is a perpetual storehouse of cold. Mars has no such general glaciation in either hemisphere, and the absence of it, which is due to lesser precipitation, together with the clearness of its skies, accounts for the warmth which the surface exhibits and which has been found so hard hitherto to interpret. Could our earth but get rid of its oceans, we too might have temperate regions stretching to the poles.