But let us now speak of that science which possesses a power of contemplating the universal forms participated by imaginative matter. Geometry, therefore, is endued with the knowledge of magnitudes and figures, and of the terms and reasons subsisting in these; together with the passions, various positions and motions which are contingent about these. For it proceeds, indeed, from an impartible point, but descends even to solids, and finds out their multiform diversities. And again, runs back from things more composite, to things more simple, and to the principles of these: since it uses compositions and resolutions, always beginning from suppositions, and assuming its principles from a previous science; but employing all the dialectic ways. In principles, by the divisions of forms from their genera, and by defining its orations. But in things posterior to principles, by demonstrations and resolutions. As likewise, it exhibits things more various, proceeding from such as are more simple, and returning to them again. Besides this, it separately discourses of its subjects; separately of its axioms; from which it rises to demonstrations; and separately of essential accidents, which it shews likewise are resident in its subjects. For every science has, indeed, a genus, about which it is conversant, and whose passions it proposes to consider: and besides this, principles, which it uses in demonstrations; and essential accidents. Axioms, indeed, are common to all sciences (though each employs them in its peculiar subject matter), but genus and essential accident vary according to the sciential variety. The subjects of geometry are therefore, indeed, triangles, quadrangles, circles, and universally figures and magnitudes, and the boundaries of these. But its essential accidents are divisions, ratios, contacts, equalities, applications, excesses, defects, and the like. But its petitions and axioms, by which it demonstrates every particular are, this, to draw a right line from any point to any point; and that, if from equals you take away equals, the remainders will be equal; together with the petitions and axioms consequent to these. Hence, not every problem nor thing sought is geometrical, but such only as flow from geometric principles. And he who is reproved and convicted from these, is convinced as a geometrician. But whoever is convinced from principles different from these, is not a geometrician, but is foreign from the geometric contemplation. But the objects of the non-geometric investigation, are of two kinds. For the thing sought for, is either from entirely different principles, as we say that a musical enquiry is foreign from geometry, because it emanates from other suppositions, and not from the principles of geometry: or it is such as uses, indeed, geometrical principles, but at the same time perversely, as if any one should say, that parallels coincide. And on this account, geometry also exhibits to us instruments of judging, by which we may know what things are consequent to its principles, and what those are which fall from the truth of its principles: for some things attend geometrical, but others arithmetical principles. And why should we speak of others, since they are far distant from these? For one science is more certain than another (as Aristotle says[99]) that, indeed, which emanates from more simple suppositions, than that which uses more various principles; and that which tells the why, than that which knows only the simple existence of a thing; and that which is conversant about intelligibles, than that which touches and is employed about sensibles. And according to these definitions of certainty, arithmetic is, indeed, more certain than geometry, since its principles excel by their simplicity. For unity is void of position, with which a point is endued. And a point, indeed, when it receives position, is the principle of geometry: but unity, of arithmetic. But geometry is more certain than spherics; and arithmetic, than music. For these render universally the causes of those theorems, which are contained under them. Again, geometry is more certain than mechanics, optics, and catoptrics. Because these discourse only on sensible objects. The principles, therefore, of geometry and arithmetic, differ, indeed, from the principles of other sciences; but the hypotheses of these two, alternately differ and agree according to the difference we have already described. Hence, also, with respect to the theorems which are demonstrated in these sciences, some are, indeed, common to them, but others peculiar. For the theorem which says, every proportion may be expressed, alone belongs to arithmetic; but by no means to geometry: since this last science contains things which cannot be expressed[100]. That theorem also, which affirms, that the gnomons of quadrangles are terminated according to the least[101], is the property of arithmetic: for in geometry, a minimum cannot be given. But those things are peculiar to geometry, which are conversant about positions; for numbers have no position: which respect contacts; for contact is found in continued quantities: and which are conversant about ineffable proportions; for where division proceeds to infinity, there also that which is ineffable is found[102]. But things common to both these sciences, are such as respect divisions, which Euclid treats of in the second book; except that proposition which divides a right line into extreme and mean proportion[103]. Again, of these common theorems, some, indeed, are transferred from geometry into arithmetic; but others, on the contrary, from arithmetic into geometry: and others similarly accord with both, which are derived into them from the whole mathematical science. For the permutation, indeed, conversions, compositions, and divisions of ratios are, after this manner, common to both. But such things as are commensurable, arithmetic first beholds; but afterwards geometry, imitating arithmetic. From whence, also, it determines such things to be commensurables of this kind, which have the same mutual ratio to one another, as number to number; because commensurability principally subsists in numbers. For where number is, there also that which is commensurable is found; and where commensurable is, there also number. Lastly, geometry first inspects triangles and quadrangles: but, arithmetic, receiving these from geometry, considers them according to proportion. For in numbers, figures reside in a causal manner. Being excited, therefore, from effects, we pass to their causes, which are contained in numbers. And at one time, we indifferently behold the same accidents, as when every polygon is resolved by us into triangles[104]: but, at another time, we are content with what is nearest to the truth, as when we find in geometry one quadrangle the double of another, but not finding this in numbers, we say that one square is double of another, except by a deficience of unity. As for instance, the square from 7, is double the square from 5, wanting one. But we have produced our discussion to this length, for the purpose of evincing the communion and difference in the principles of these two sciences. Since it belongs to a geometrician to survey from what common principles common theorems are divided; and from what principles such as are peculiar proceed; and thus to distinguish between the geometrical, and non-geometrical, referring each of them to different sciences.

CHAP. III.

From whence the whole of Geometry originated, how far it proceeds, and in what its Utility consists.

But, beginning still higher, let us contemplate the whole of geometry, from whence it originated, and how far it proceeds in its energies: for thus we shall properly perceive the ornament which it contains. Indeed, it is necessary to understand that it is extended through the universality of things: that it accommodates its animadversions[105] to all beings; and contains in itself the forms of all things: that, according to its supreme part, and which is endued with the highest power of intelligence, it surveys true beings; and teaches by images the properties of divine ornaments, and the powers of intellectual forms: for it contains the reasons of these also in its peculiar contemplations. And it exhibits what figures are convenient to the god, to primary essences, and to the natures of souls. But, according to its middle cognitions, it evolves cogitative reasons; explains and beholds the variety which they contain; exhibits their existence, and inherent passions; as also, their communities and diversities. From which, indeed, it comprehends, in terminated bounds, the imaginative formations of figures, and reduces them to the essential substance of reasons. But, according to the third propagations of cogitative intelligence, it considers nature, and delivers the manner in which the forms of sensible elements, and the powers which they contain, are previously received according to cause, in the reasons themselves. For it possesses, indeed, the images of universal intelligible genera; but the exemplars of such as are sensible: and completes its own essence, according to such things as are subject to cogitation. And through these, as through proper mediums, it ascends and descends to those universals which truly are, and to sensible forms which are in a state of perpetual formation. But always geometrically philosophising concerning the things which are, it comprehends in all the proportions of virtues, the images of intellectual, animal, and natural concerns. And it delivers, in an orderly manner, all the ornaments of republics: and exhibits in itself their various mutations. Such then are its energies arising from a certain immaterial power of cognition: but when it touches upon matter, it produces from itself a multitude of sciences; such as geodæsia, mechanics, and perspective: by which it procures the greatest benefit to the life of mortals. For it constructs by these sciences, war-instruments, and the bulwarks of cities; and makes known the circuits of mountains, and the situations of places. Lastly, it instructs us in measures: at one time of the diversified ways of the earth; and at another, of the restless paths of the deep. Add too, that it constructs balances and scales, by which it renders to cities a sure equality according to the invariable standard of number. Likewise, it clearly expresses, by images, the order of the whole orb of the earth; and by these, manifests many things incredible to mankind, and renders them credible to all. Such, indeed, as Hiero of Syracuse is reported to have said of Archimedes[106], when he had fabricated a ship furnished with three sails, which he had prepared to send to Ptolemy king of Egypt. For when all the Syracusians together, were unable to draw this ship, Archimedes enabled Hiero to draw it himself, without any assistance from others. But he, being astonished, said, From this day, Archimedes shall be believed in whatever he shall affirm. They also report, that Gelo said the same, when Archimedes discovered the weight of the several materials from which his crown was composed, without dissolving their union. And such are the narrations which many of the ancients have delivered to our memory, who were willing to speak in praise of the mathematics: and, on this account, we have placed before the reader, for the present, a few out of the many, as not foreign from our design of exhibiting the knowledge and utility of geometry.

CHAP. IV.

On the Origin of Geometry, and its Inventors.

But let us now explain the origin of geometry, as existing in the present age of the world. For the demoniacal Aristotle[107] observes, that the same opinions often subsist among men, according to certain orderly revolutions of the world: and that sciences did not receive their first constitution in our times, nor in those periods which are known to us from historical tradition, but have appeared and vanished again in other revolutions of the universe; nor is it possible to say how often this has happened in past ages, and will again take place in the future circulations of time. But, because the origin of arts and sciences is to be considered according to the present revolution of the universe, we must affirm, in conformity with the most general tradition, that geometry was first invented by the Egyptians, deriving its origin from the mensuration of their fields: since this, indeed, was necessary to them, on account of the inundation of the Nile washing away the boundaries of land belonging to each. Nor ought it to seem wonderful that the invention of this as well as of other sciences, should receive its commencement from convenience and opportunity. Since whatever is carried in the circle of generation, proceeds from the imperfect to the perfect. A transition, therefore, is not undeservedly made from sense to consideration, and from this to the nobler energies of intellect[108]. Hence, as the certain knowledge of numbers received its origin among the Phœnicians, on account of merchandise and commerce, so geometry was found out among the Egyptians from the distribution of land. When Thales, therefore, first went into Egypt, he transferred this knowledge from thence into Greece: and he invented many things himself, and communicated to his successors the principles of many. Some of which were, indeed, more universal, but others extended to sensibles. After him Ameristus, the brother of Stesichorus the poet, is celebrated as one who touched upon, and tasted the study of geometry, and who is mentioned by Hippias the Elean, as restoring the glory of geometry. But after these, Pythagoras changed that philosophy, which is conversant about geometry itself, into the form of a liberal doctrine, considering its principles in a more exalted manner; and investigating its theorems immaterially and intellectually; who likewise invented a treatise of such things as cannot be explained[109] in geometry, and discovered the constitution of the mundane figures. After him, Anaxagoras the Clazomenian succeeded, who undertook many things pertaining to geometry. And Oenopides the Chian, was somewhat junior to Anaxagoras, and whom Plato mentions in his Rivals, as one who obtained mathematical glory. To these, succeeded Hippocrates, the Chian, who invented the quadrature of the lunula[110], and Theodorus the Cyrenean, both of them eminent in geometrical knowledge. For the first of these, Hippocrates composed geometrical elements: but Plato, who was posterior to these, caused as well geometry itself, as the other mathematical disciplines, to receive a remarkable addition, on account of the great study he bestowed in their investigation. This he himself manifests, and his books, replete with mathematical discourses, evince: to which we may add, that he every where excites whatever in them is wonderful, and extends to philosophy. But in his time also lived Leodamas the Thasian, Archytas the Tarantine, and Theætetus the Athenian; by whom theorems were increased, and advanced to a more skilful constitution. But Neoclides was junior to Leodamas, and his disciple was Leon; who added many things to those thought of by former geometricians. So that Leon also constructed elements more accurate, both on account of their multitude, and on account of the use which they exhibit: and besides this, he discovered a method of determining when a problem, whose investigation is sought for, is possible, and when it is impossible. But Eudoxus the Cnidian, who was somewhat junior to Leon, and the companion of Plato, first of all rendered the multitude of those theorems which are called universals more abundant; and to three proportions added three others; and things relative to a section, which received their commencement from Plato, he diffused into a richer multitude, employing also resolutions in the prosecution of these. Again, Amyclas the Heracleotean, one of Plato’s familiars, and Menæchmus, the disciple, indeed, of Eudoxus, but conversant with Plato, and his brother Dinostratus, rendered the whole of geometry as yet more perfect. But Theudius, the Magnian, appears to have excelled, as well in mathematical disciplines, as in the rest of philosophy. For he constructed elements egregiously, and rendered many particulars more universal. Besides, Cyzicinus the Athenian, flourished at the same period, and became illustrious in other mathematical disciplines, but especially in geometry. These, therefore, resorted by turns to the Academy, and employed themselves in proposing common questions. But Hermotimus, the Colophonian, rendered more abundant what was formerly published by Eudoxus and Theætetus, and invented a multitude of elements, and wrote concerning some geometrical places. But Philippus the Mendæan[111], a disciple of Plato, and by him inflamed in the mathematical disciplines, both composed questions, according to the institutions of Plato, and proposed as the object of his enquiry whatever he thought conduced to the Platonic philosophy. And thus far historians produce the perfection of this science. But Euclid was not much junior to these, who collected elements, and constructed many of those things which were invented by Eudoxus; and perfected many which were discovered by Theætetus. Besides, he reduced to invincible demonstrations, such things as were exhibited by others with a weaker arm. But he lived in the times of the first Ptolemy: for Archimedes mentions Euclid, in his first book, and also in others. Besides, they relate that Euclid was asked by Ptolemy, whether there was any shorter way to the attainment of geometry than by his elementary institution, and that he answered, there was no other royal path which led to geometry. Euclid, therefore, was junior to the familiars of Plato, but more ancient than Eratosthenes and Archimedes (for these lived at one and the same time, according to the tradition of Eratosthenes) but he was of the Platonic sect, and familiar with its philosophy: and from hence he appointed the constitution of those figures which are called Platonic[112], as the end of his elementary institutions.

CHAP. V.

What Mathematical Volumes Euclid composed.

There are, therefore, many other mathematical volumes of this man, full of admirable diligence, and skilful consideration: for such are his Optics[113], and Catoptrics: and such also, are his elementary institutions, which conduce to the attainment of music[114]; and his book concerning divisions[115]. But his geometrical institution of the Elements is especially admirable, on account of the order and election of those theorems and problems, which are distributed through the Elements. For he does not assume all which might be said, but that only which could be delivered in an elementary order. Besides this, he exhibits modes of syllogisms of every kind; some, indeed, receiving credibility from causes, but others proceeding from certain signs; but all of them invincible and sure, and accommodated to science. But, besides these, he employs all the dialectic ways, dividing, indeed, in the inventions of forms; but defining in essential reasons: and again, demonstrating in the progressions from principles to things sought, but resolving in the reversions from things sought to principles. Besides this, we may view in his geometrical elements, the various species of conversions, as well of such as are simple as of such as are more composite. And again, what wholes may be converted with wholes: what wholes with parts; and on the other hand, what as parts with parts[116]. Besides this, we must say, that in the continuation of inventions, the dispositions and order of things preceding and following, and in the power with which he treats every particular, he is not deceived, as if falling from science, and carried to its contrary, falsehood and ignorance. But because we may imagine many things as adhering to truth, and which are consequent to principles producing science, which nevertheless tend to that error which flows from the principles, and which deceives ruder minds, he has also delivered methods of the perspicacious prudence belonging to these. From the possession of which, we may exercise those in the invention of fallacies, who undertake this inspection, and may preserve ourselves from all deception. And this book, by which he procures us this preparation, is inscribed ψευδαρίος, or, concerning fallacies[117]. Because he enumerates in order their various modes, and in each exercises our cogitation with various theorems. And he compares truth with falsehood, and adapts the confutation of deception to experience itself. This book, therefore, contains a purgative and exercising power. But the institution of his elementary, skilful contemplation of geometrical concerns, possesses an invincible and perfect narration.