CHAP. VI.

Concerning the Purport of Geometry.

But, perhaps, some one may enquire in what the design of this treatise consists? To this I answer, that its design is to be distinguished as well according to the objects of enquiry, as according to the learner. And, indeed, regarding the subject, we must affirm, that all the discourse of geometry is concerning the mundane figures. Because it begins from such things as are simple, but ends in the variety of their constitution. And, indeed, it constitutes each of them separately, but at the same time delivers their inscriptions in a sphere, and the proportions which they contain. On which account some have thought, that the design of each of the books is to be referred to the world; and they have delivered to our memory, the utility which they afford us in the contemplation of the universe. But distinguishing the design with respect to the learner, we must affirm, that its purpose is the institution of elements; and the perfection of the learners cogitative powers in universal geometry. For beginning from these, we are enabled to understand the other parts of this science, and to comprehend the variety which they contain. And, indeed, without these, the discipline of the rest, is to us impossible and incomprehensible. For such theorems as are most principal and simple, and are most allied to first suppositions, are here collected in a becoming order. And the demonstrations of other mathematicians, use these as most known, and advance from these in their most complicated progressions. For thus Archimedes, in what he has writ concerning the sphere and cylinder, and Apollonius, and the rest of mathematicians, use, as evident principles, the things exhibited in this treatise. Its purpose, therefore, is the institution of learners in the whole geometric science, and to deliver the determinate constitutions of the mundane figures.

CHAP. VII.

From whence the Name of Elementary Institution originated, and why Euclid is called the Institutor of Elements.

But what gave rise to the name of elementary institution, and of element itself, from which elementary institution was derived? To this we shall reply, by observing, that of theorems some are usually called elements, but others elementary, and others again are determined beyond the power of these. Hence, an element is that whose consideration passes to the science of other things, and from which we derive a solution of the doubts incident to the particular science we investigate. For as there are certain first principles of speech, most simple and indivisible, which we denominate elements, and from which all discourse is composed; so there are certain principal theorems of the whole of geometry, denominated elements, which have the respect of principles to the following theorems; which regard all the subsequent propositions, and afford the demonstrations of many accidents essential to the subjects of geometric speculation. But things elementary are such as extend themselves to a multitude of propositions, and possess a certain simplicity and sweetness, yet are not of the same dignity with elements; because their contemplation is not common to all the science to which they belong, as is the case in the following theorem, that in triangles, perpendiculars, drawn from their angles to their sides, coincide in one point[118]. Lastly, whatever neither possesses a knowledge extended into multitude, nor exhibits any thing skilful and elegant, falls beyond the elementary power. Again, an element, as Menæchmus says, may have a twofold definition. For that which confirms, is an element of that which is confirmed; as the first proposition of Euclid with respect to the second, and the fourth with regard to the fifth. And thus, indeed, many things may be mutually called elements one of another; for they are mutually confirmed. Thus, because the external angles of right-lined figures, are equal to four right angles, the multitude of internal ones equal to right angles; and, on the contrary, that from this is exhibited[119]. Besides, an element is otherwise called that into which, because it is more simple, a composite is dissolved. But it must be observed, that every element cannot be called the element of every thing: but such as are more principal are the elements of such as are constituted in the reason of the thing effected; as petitions are the elements of theorems. And, according to this signification of an element, Euclid’s elements are constructed. Some, indeed, of that geometry which is conversant about planes; but others of stereometry. In the same manner, likewise, in arithmetic and astronomy, many have composed elementary institutions. But it is difficult, in each science, to chuse and conveniently ordain elements, from which all the peculiarities of that science originate, and into which they may be resolved. And among those who have undertaken this employment, some have been able to collect more, but others fewer elements. And some, indeed, have used shorter demonstrations; but others have extended their treatise to an infinite length. And some have omitted the method by an impossibility; but others that by proportion; and others, again, have attempted preparations against arguments destroying principles. So that many methods of elementary institution have been invented by particular writers on this subject. But it is requisite that this treatise should entirely remove every thing superfluous, because it is an impediment to science. But every thing should be chosen, which contains and concludes the thing proposed; for this is most convenient and useful in science. The greatest care, likewise, should be paid to clearness and brevity; for the contraries to these, disturb our cogitation. Lastly, it should vindicate to itself, the universal comprehension of theorems, in their proper bounds: for such things as divide learning into particular fragments, produce an incomprehensible knowledge. But in all these modes, any one may easily find, that the elementary institution of Euclid excels the institutions of others. For its utility, indeed, especially confers to the contemplation of primary figures: but the transition from things more simple to such as are more various, and also that perception, which from axioms possesses the beginning of knowledge, produces clearness, and an orderly tradition: and the migration from first and principal theorems to the objects of enquiry, effects the universality of demonstration. For whatever he seems to omit, may either be known by the same ways, as the construction of a scalene and isosceles triangle[120]: or because they are difficult, and capable of infinite variety, they are far remote from the election of elements, such as the doctrine of perturbate proportions, which Apollonius has copiously handled: or, lastly, because they may be easily constructed from the things delivered, as from causes, such as many species of angles and lines. For these, indeed, were omitted by Euclid, and are largely discoursed of by others, and are known from simple propositions. And thus much concerning the universal elementary institution of geometry.

CHAP. VIII.

Concerning the Order of Geometrical Discourses.

But let us now explain the universal order of the discourses contained in geometry. Because then, we assert that this science consists from hypothesis[121], and demonstrates its consequent propositions from definite principles (for one science only, I mean the first philosophy, is without supposition, but all the rest assume their principles from this) it is necessary that he who constructs the geometrical institution of elements, should separately deliver the principles of the science, and separately the conclusions which flow from those principles; and that he should render no reason concerning the nature or truth of the principles, but should confirm by reasons, the things consequent to these geometric principles. For no science demonstrates its own principles, nor discourses concerning them; but procures to itself a belief of their reality, and they become more evident to the particular science to which they belong than the things derived from them as their source. And these, indeed, science knows by themselves; but their consequents, through the medium of these. For thus, also, the natural philosopher propagates his reasons from a definite principle, supposing the existence of motion. Thus too, the physician, and he who is skilled in any of the other sciences and arts. For if any one mingles principles, and things flowing from principles into one and the same, he disturbs the whole order of knowledge, and conglutinates things which can never mutually agree; since a principle, and its emanating consequent, are naturally distinct from each other. In the first place, therefore (as I have said), principles in the geometric institution are to be distinguished from their consequents, which is performed by Euclid in each of his books; who, before every treatise, exhibits the common principles of this science; and afterwards divides these common principles into hypotheses, petitions, and axioms. For all these mutually differ; nor is an axiom, petition, and hypothesis the same, according to the demoniacal Aristotle; but when that which is assumed in the order of a principle, is indeed known to the learner, and credible by itself, it is an axiom: such as, that things equal to the same, are mutually equal to each other. But when any one, hearing another speak concerning that of which he has no self-evident knowledge, gives this assent to its assumption, this is hypothesis. For that a circle is a figure of such a particular kind, we presume (not according to any common conception) without any preceding doctrine. But when, again, that which is asserted was neither known, nor admitted by the learner, yet is assumed, then (says he) we call it petition; as the assumption that all right angles are equal. But the truth of this is evinced by those who study to treat of some petition, as of that which cannot by itself be admitted by any one. And thus, according to the doctrine of Aristotle[122], are axiom, petition, and supposition distinguished. But oftentimes, some denominate all these hypotheses, in the same manner as the Stoics call every simple enunciation an axiom. So that, according to their opinion, hypotheses also will be axioms; but, according to the opinion of others, axioms will be called suppositions. Again, such things as flow from principles are divided into problems and theorems. The first, indeed, containing the origin, sections, ablations, or additions of figures, and all the affections with which they are conversant; but the other exhibiting the accidents essential to each figure. For, as things effective of science, participate of contemplation, in the same manner things contemplative previously assume problems in the place of operations. But formerly some of the ancient mathematicians thought that all geometrical propositions should be called theorems, as the followers of Speusippus and Amphinomus, believing, that to contemplative sciences, the appellation of theorems is more proper than that of problems; especially since they discourse concerning eternal and immutable objects. For origin does not subsist among things eternal: on which account, problems cannot have any place in these sciences; since they enunciate origin, and the production of that which formerly had no existence, as the construction of an equilateral triangle, or the description of a square on a given right line, or the position of a right line at a given point. It is better, therefore (say they), to assert that all propositions are of the speculative kind; but that we perceive their origin, not by production, but by knowledge, receiving things eternal as if they were generated; and on this account we ought to conceive all those theorematically, but not problematically. But others, on the contrary, think that all should be called problems; as those mathematicians who have followed Menæchmus. But that the office of problems is twofold, sometimes, indeed, to procure the thing sought; but at other times when they have received the determinate object of enquiry, to see, either what it is, or of what kind it is, or what affection it possesses, or what its relation is to another. And, indeed, the assertions of each are right; for the followers of Speusippus well perceive. Since the problems of geometry are not of the same kind, with such as are mechanical. For these are sensibles, and are endued with origin, and mutation of every kind. And, on the other hand, those who follow Menæchmus do not dissent from truth: since the inventions of theorems cannot by any means take place without an approach into matter; I mean intelligible matter. Reasons, therefore, proceeding into this, and giving form to its formless nature, are not undeservedly said to be assimilated to generations. For we say that the motion of our cogitation, and the production of its inherent reasons, is the origin of the figures situated in the phantasy, and of the affections with which they are conversant: for there constructions and sections, positions and applications, additions and ablations, exist: but every thing resident in cogitation, subsists without origin and mutation. There are, therefore, both geometrical problems and theorems. But, because contemplation abounds in geometry, as production in mechanics, all problems participate of contemplation; but every thing contemplative is not problematical. For demonstrations are entirely the work of contemplation; but every thing in geometry posterior to the principles, is assumed by demonstration. Hence, a theorem is more common: but all theorems do not require problems; for there are some which possess from themselves the demonstration of the thing sought. But others, distinguishing a theorem from a problem, say, that indeed every problem receives whatever is predicated of its matter, together with its own opposite: but that every theorem receives, indeed, its symptom predicate, but not its opposite. But I call the matter of these, that genus which is the subject of enquiry; as for instance, a triangle, quadrangle, or a circle: but the symptom predicate, that which is denominated an essential accident, as equality, or section, or position, or some other affection of this kind. When, therefore, any one proposes to inscribe an equilateral triangle in a circle, he proposes a problem: for it is possible to inscribe one that is not equilateral. But when any one asserts that the angles at the base of an isosceles triangle are equal, we must affirm that he proposes a theorem; for it is not possible that the angles at the base of an isosceles triangle should be unequal to each other. On which account, if any one forming problematically, should say that he wishes to inscribe a right angle in a semi-circle, he must be considered as ignorant of geometry; since every angle in a semi-circle is necessarily a right one. Hence, propositions which have an universal symptom, attending the whole matter, must be called theorems; but those in which the symptom is not universal, and does not attend its subject, must be considered as problems. As to bisect a given terminated right line, or to cut it into equal parts: for it is possible to cut it into unequal parts. To bisect every rectilinear angle, or divide it into equal parts; for a division may be given into unequal parts. On a given right line to describe a quadrangle; for a figure that is not quadrangular may be described. And, in short, all of this kind belong to the problematical order. But the followers of Zenodotus, who was familiar with the doctrine of Oenopides, but the disciple of Andron, distinguish a theorem from a problem, so far as a theorem enquires what the symptom is which is predicated of the matter it contains; but a problem enquires what that is, the existence of which is granted. From whence the followers of Possidonius define a theorem a proposition, by which it is enquired whether a thing exists or not; but a problem, a proposition, in which it is enquired what a thing is, or the manner of its existence. And they say that we ought to form the contemplating proposition by enunciating, as that every triangle has two sides greater than the remaining one, and that the angles at the base of every isosceles triangle are equal: but we must form the problematical proposition, as if enquiring whether a triangle is to be constructed upon this right line. For there is a difference, say they, absolutely and indefinitely, to enquire whether the thing proposed is from a given point to erect a right line at right angles to a given line, and to behold what the perpendicular is. And thus, from what has been said, it is manifest there is some difference between a problem and a theorem. But that the elementary institution of Euclid, also, consists partly of problems, and partly of theorems, will be manifest from considering the several propositions. Since, in the conclusion of his demonstrations, he sometimes adds (which was to be shewn) sometimes (which was to be done) the latter sentence being the mark or symbol of problems, and the former of theorems. For although, as we have said, demonstration takes place in problems, yet it is often for the sake of generation; for we assume demonstration in order to shew, that what was commanded is accomplished: but sometimes it is worthy by itself, since the nature of the thing sought after may be brought into the midst. But you will find Euclid sometimes combining theorems with problems, and using them alternately, as in the first book; but sometimes abounding with the one and not the other. For the fourth book is wholly problematical; but the fifth is entirely composed from theorems. And thus much concerning the order of geometrical propositions.

CHAP. IX.