It should further be remarked that the three arguments derived from these relations are independent of each other. They are not as three links of a chain, any one of which being broken the chain is broken. They are as three strands of a triple cord. If one strand holds, the cord holds. It may be shown that all three are to be trusted.

It is not to be expected, however, that the stars as actually seen should exhibit these relations, since far the larger number are but faintly visible; so that the eye would look in vain for the signs of law among them, even though law may be there. What is necessary is that maps should be constructed on a uniform and intelligible plan, and that in these maps the faint stars should be made bright, and the bright stars brighter.

The maps exhibited during this discourse [since published as my “Library Atlas”] have been devised for this purpose amongst others. There are twelve of them, but they overlap, so that in effect each covers a tenth part of the heavens. There is first a north-polar map, then five maps symmetrically placed around it; again, there is a south-polar map, and five maps symmetrically placed round that map; and these five so fit in with the first five as to complete the enclosure of the whole sphere. In effect, every map of the twelve has five maps symmetrically placed around it and overlapping it.

Since the whole heavens contain but 5932 stars visible to the naked eye, each of the maps should contain on the average about 593 stars. But instead of this being the case, some of the maps contain many more than their just proportion of stars, while in others the number as greatly falls short of the average. One recognizes, by combining these indications, the existence of a roughly circular region, rich in stars, in the northern heavens, and of another, larger and richer, in the southern hemisphere.

To show the influence of these rich regions, it is only necessary to exhibit the numerical relations presented by the maps.

The north-polar map, in which the largest part of the northern rich region falls, contains no less than 693 lucid stars, of which upwards of 400 fall within the half corresponding to the rich region. Of the adjacent maps, two contain upwards of 500 stars, while the remaining three contain about 400 each. Passing to the southern hemisphere, we find that the south-polar map, which falls wholly within a rich region, contains no less than 1132 stars! One of the adjacent maps contains 834 stars, and the four others exhibit numbers ranging from 527 to 595.

It is wholly impossible not to recognize so unequal a distribution as exhibiting the existence of special laws of stellar aggregation.

It is noteworthy, too, that the greater Magellanic cloud falls in the heart of the southern rich region. Were there not other signs that this wonderful object is really associated with the sidereal system, it might be rash to recognize this relation as indicating the existence of a physical connection between the Nubecula Major and the southern region rich in stars. Astronomers have indeed so long regarded the Nubeculæ as belonging neither to the sidereal nor to the nebular systems, that they are not likely to recognize very readily the existence of any such connection. Yet how strangely perverse is the reasoning which has led astronomers so to regard these amazing objects. Presented fairly, that reasoning amounts simply to this: The Magellanic clouds contain stars and they contain nebulæ; therefore they are neither nebular nor stellar. Can perversity of reasoning be pushed further? Is not the obvious conclusion this, that since nebulæ and stars are seen to be intermixed in the Nubeculæ, the nebular and stellar systems form in reality but one complex system?

As to the existence of star-streams and clustering aggregations, we have also evidence of a decisive character. There is a well-marked stream of stars running from near Capella towards Monoceros. Beyond this lies a long dark rift altogether bare of lucid orbs, beyond which again lies an extensive range of stars, covering Gemini, Cancer, and the southern parts of Leo. This vast system of stars resembles a gigantic sidereal billow flowing towards the Milky Way as towards some mighty shore-line. Nor is this description altogether fanciful; since one of the most marked instances of star-drift presently to be adduced refers to this very region. These associated stars are urging their way towards the galaxy, and that at a rate which, though seemingly slow when viewed from beyond so enormous a gap as separates us from this system, must in reality be estimated by millions of miles in every year.

Other streams and clustering aggregations there are which need not here be specially described. But it is worth noticing that all the well-marked streams recognized by the ancients seem closely associated with the southern rich region already referred to. This is true of the stars forming the River Eridanus, the serpent Hydra, and the streams from the water-can of Aquarius. It is also noteworthy that in each instance a portion of the stream lies outside the rich region, the rest within it; while all the streams which lie on the same side of the galaxy tend towards the two Magellanic clouds.