Most intimate signs of association between lucid stars and the galaxy can be recognized—(i.) in the part extending from Cygnus to Aquila; (ii.) in the part from Perseus to Monoceros; (iii.) over the ship Argo; and (iv.) near Crux and the feet of Centaurus.

Before proceeding to the subject of Star-drift, three broad facts may be stated. They are, I believe, now recognized for the first time, and seem decisive of the existence of special laws of distribution among the stars:—

First, the rich southern region, though covering but a sixth part of the heavens, contains one-third of all the lucid stars, leaving only two-thirds for the remaining five-sixths of the heavens.

Secondly, if the two rich regions and the Milky Way be considered as one part of the heavens, the rest as another, then the former part is three times as richly strewn with lucid stars as the second.

Thirdly, the southern hemisphere contains one thousand more lucid stars than the northern, a fact which cannot but be regarded as most striking when it is remembered that the total number of stars visible to ordinary eyesight in both hemispheres falls short of 6000.

Two or three years ago, the idea suggested itself to me that if the proper motions of the stars were examined, they would be found to convey clear information respecting the existence of variety of structure, and special laws of distribution within the sidereal system.

In the first place, the mere amount of a star’s apparent motion must be regarded as affording a means of estimating the star’s distance. The nearer a moving object is, the faster it will seem to move, and vice versâ. Of course in individual instances little reliance can be placed on this indication; but by taking the average proper motions of a set of stars, a trustworthy measure may be obtained of their average distance, as compared with the average distance of another set.

For example, we have in this process the means of settling the question whether the apparent brightness of a star is indeed a test of relative nearness. According to accepted theories the sixth-magnitude stars are ten or twelve times as far off as those of the first magnitude. Hence their motions should, on the average, be correspondingly small. Now, to make assurance doubly sure, I divided the stars into two sets, the first including the stars of the 1st, 2nd, and 3rd, the second including those of the 4th, 5th, and 6th magnitude. According to accepted views, the average proper motion for the first set should be about five times as great as that for the second. I was prepared to find it about three times as great; that is, not so much greater as the accepted theories require, but still considerably greater. To my surprise, I found that the average proper motion of the brighter orders of stars is barely equal to that of the three lower orders.

This proves beyond all possibility of question that by far the greater number of the fainter orders of stars (I refer here throughout to lucid stars) owe their faintness not to vastness of distance, but to real relative minuteness.

To pass over a number of other modes of research, the actual mapping of the stellar motions, and the discovery of the peculiarity to which I have given the name of star-drift, remain to be considered.