In catalogues it is not easy to recognize any instances of community of motion which may exist among the stars, owing to the method in which the stars are arranged. What is wanted in this case (as in many others which yet remain to be dealt with) is the adoption of a plan by which such relations may be rendered obvious to the eye. The plan I adopted was to attach to each star in my maps a small arrow, indicating the amount and direction of that star’s apparent motion in 36,000 years (the time-interval being purposely lengthened, as otherwise most of the arrows would have been too small to be recognized). When this was done, several well-marked instances of community of motion could immediately be recognized.
It is necessary to premise, however, that before the experiment was tried, there were reasons for feeling very doubtful whether it would succeed. A system of stars might really be drifting athwart the heavens, and yet the drift might be rendered unrecognizable through the intermixture of more distant or nearer systems having motions of another sort and seen accidentally in the same general direction.
This was found to be the case, indeed, in several instances. Thus the stars in the constellation Ursa Major, and neighbouring stars in Draco, exhibit two well-marked directions of drift. The stars β, γ, δ, ε, and ζ of the Great Bear, besides two companions of the last-named star, are travelling in one direction, with equal velocity, and clearly form one system. The remaining stars in the neighbourhood are travelling in a direction almost exactly the reverse. But even this relation, thus recognized in a region of diverse motions, is full of interest. Baron Mädler, the well-known German astronomer, recognizing the community of motion between ζ Ursæ and its companions, calculated the cyclic revolution of the system to be certainly not less than 7000 years. But when the complete system of stars showing this motion is considered, we get a cyclic period so enormous, that not only the life of man, but the life of the human race, the existence of our earth, nay, even the existence of the solar system, must be regarded as a mere day in comparison with that tremendous cycle.
Then there are other instances of star-drift where, though two directions of motion are not intermixed, the drifting nature of the motion is not at once recognized, because of the various distances at which the associated stars lie from the eye.
A case of this kind is to be met with in the stars forming the constellation Taurus. It was here that Mädler recognized a community of motion among the stars, but he did not interpret this as I do. He had formed the idea that the whole of the sidereal system must be in motion around some central point; and for reasons which need not here be considered, he was led to believe that in whatever direction the centre of motion may lie, the stars seen in that general direction would exhibit a community of motion. Then, that he might not have to examine the proper motions all over the heavens, he inquired in what direction (in all probability) the centre of motion may be supposed to lie. Coming to the conclusion that it must lie towards Taurus, he examined the proper motions in that constellation, and found a community of motion which led him to regard Alcyone, the chief star of the Pleiades, as the centre around which the sidereal system is moving. Had he examined further he would have found more marked instances of community of motion in other parts of the heavens, a circumstance which would have at once compelled him to abandon his hypothesis of a central sun in the Pleiades, or at least to lay no stress on the evidence derivable from the community of motion in Taurus.
Perhaps the most remarkable instance of star-drift is that observed in the constellations Gemini and Cancer. Here the stars seem to set bodily towards the neighbouring part of the Milky Way. The general drift in that direction is too marked, and affects too many stars, to be regarded as by any possibility referable to accidental coincidence.
It is worthy of note that if the community of star-drift should be recognized (or I prefer to say, when it is recognized), astronomers will have the means of determining the relative distances of the stars of a drifting system. For differences in the apparent direction and amount of motion can be due but to differences of distance and position, and the determination of these differences becomes merely a question of perspective.[18]
Before long it is likely that the theory of star-drift will be subjected to a crucial test, since spectroscopic analysis affords the means of determining the stellar motions of recess or approach. The task is a very difficult one, but astronomers have full confidence that in the able hands of Mr. Huggins it will be successfully accomplished. I await the result with full confidence that it will confirm my views. (See pages [92–94] for the result.)
* * * * *
Turning to the subject of Star-mist, under which head I include all orders of nebulæ, I propose to deal with but a small proportion of the evidence I have collected to prove that none of the nebulæ are external galaxies. That evidence has indeed become exceedingly voluminous.