62.
The finely ground surface must, of course, be apparently correct in so far as a spherometer (with 3 inches between the legs for a disc 1 foot in diameter) will show. Polishing and figuring are carried out simultaneously. Half an hour's polishing with a slate-backed pitch tool and rouge and water will enable an optical test to be made. The most convenient test is that of Foucault, a simple appliance for the purpose being shown in the figure (62). It essentially consists of a small lamp surrounded by an opaque chimney (A) through which a minute aperture (pin-hole) is made. A small lens may be used, of very great curvature, or even a transparent marble to throw an image of the flame on the pin-hole.
A screen (B) is placed close to the source, and is provided with a rocking or tilting motion (C) in its own plane. The source and screen are partly independent, and each is provided with a fine adjustment which serves to place it in position near the centre of curvature. The screen is so close to the pin-hole in fact that both the source and a point on the edge of the screen may be said to be at the centre of curvature of the mirror. The mirror is temporarily mounted so as to have its axis horizontal, in a cellar or other place of uniform temperature.
The final focussing to the centre of curvature is made by the fine adjustment screws; the image may be received on a bit of paper placed on the screen and overlapping the edge nearest the source. The screws are worked till the image has its smallest dimension and is bisected by the edge of the screen. The test consists in observing the appearance of the mirror surface while the screen is tilted to cut off the light, as seen by an eye placed at the edge of the screen, a peephole or eye lens being provided to facilitate placing the eye in a correct position. The screen screws are worked so as to gradually cut off the light, and the observer notes the appearance of the mirror surface. If the curves are perfect and spherical, the transition from complete illumination to darkness will be abrupt, and no part of the mirror will remain illuminated after the rest.
For astronomical purposes a parabolic mirror is required. In this case the disc may be partially screened by zonal screens, and the position of the image for different zones noted; the correctness or otherwise of the curvature may then be ascertained by calculation. A shorter way is to place the source just outside the focus, to be found by trial, and then, moving the extinction screen (now a separate appliance) to, say, five times the radius of curvature away, where the image should now appear, the suddenness of extinction may be investigated. This, of course, involves a corresponding modification of the apparatus.
Whether the tests indicate that a deepening of the Centre, i.e. increase of the curvature, or a flattening of the edges is required, at least two remedial processes are available. The "chisel and mallet" method of altering the size of the pitch, squares of the polisher may be employed, or paper or small pitch tools may be used to deepen the centre. The "chisel and mallet" method merely consists in removing pitch squares from a uniformly divided tool surface by means of the instruments mentioned. This removal is effected at those points at which the abrasion requires to be reduced.
When some practice is attained, I understand that it is usual to try for a parabolic form at once, as soon as the polishing commences. This is done by dividing the pitch surface by V-shaped grooves, the sides of the grooves being radii of the circular surface, so that the central parts of the mirror get most of the polishing action. If paper tools are used they must not be allowed much overhang, or the edges of the mirror betray the effects of paper elasticity. Most operators "sink" the middle, but the late Mr. Lassell, a most accomplished worker, always attained the parabolic form by reducing the curvature of the edges of a spherical mirror.
[§ 72. Preparation of Flat Surfaces. —]
As Sir H. Grubb has pointed out, this operation only differs from those previously described in that an additional condition has to be satisfied. This condition refers to the mean curvature, which must be exact (in the case of flats it is of course zero) to a degree which is quite unnecessary in the manufacture of mirrors or lenses.
A little consideration will show that to get a surface flat the most straightforward method is to carry out the necessary and sufficient condition for three surfaces to fit each other impartially. If they each fit each other, they must clearly all be flat. To carry out the process of producing a flat surface, therefore, two tools are made, and the glass or speculum is ground first on one and then on the other, the tools being kept "in fit" by occasional mutual grinding. The grinding and polishing go on as usual. If paper is employed, care must be taken that the polisher is about the same size as the object to be polished.