A section of the gill accompanied by a small piece of cap-tissue, as in E, will confirm the presence or absence of noticeable cystidia (or hairs) on the cap. Now mount the section bounded by FG and HI in a drop of water containing either a drop of washing-up liquid and/or glycerine; the soapy liquid helps to expel any water which may tend to cling to the gill-margin amongst the cystidia and the glycerine stops the mount from drying out whilst further sections for comparison are cut and examined. It is at this time that the structure of the outermost layer of the cap can be examined, e.g. whether it is made up of a turf-like structure; the presence or absence of cystidia on the cap can be also confirmed ([fig. 7]A-C). It is frequently necessary to tap the mount in order to spread the tissue slightly and expose the elements; this can be done very efficiently by light pressure from the end of a pencil to which an eraser is attached. Cut off along line JK to eliminate marginal cystidia from confusing the picture and mount both pieces separately.
3. Cut out a wedge of tissue from the fruit-body (L) so as to have several gills attached to some cap-tissue; until one is familiar with the variability of facial and marginal cystidia, carefully cut along the line PQ (note: the cut is made one-third of the distance from the cap margin, thus eliminating the possibility of large numbers of marginal cystidia being examined in error for facial cystidia). Now make a second cut along the line of RS so that finally a small block of tissue remains (M).
Mount on a dry slide with the plane through PQ face down on the slide and observe under a low magnification, to assess whether cystidia on the gill-face are present or absent, and if present their general shape and whether numerous or infrequent ([fig. 8]).
Mount in water/washing-up mixture as outlined above and tap gently with the rubber attached to the end of a pencil; evenly distributed pressure should be given. If the gills appear to be too close then rotate the rubber a little whilst pressing in order to spread the tissue.
4. Using a low power of a microscope and looking down into the plane RS of the unmodified block M or a similar block, one obtains by this simple technique a very accurate idea as to the structure of the trama of the gill ([fig. 9]). The organisation of this tissue is very important in classification, some groups of toadstools having what has been described as regular trama ([fig. 9]C), others irregular ([fig. 9]D), inverse ([fig. 9]B) or divergent ([fig. 9]A). This same tissue may be thick or sparse to wanting, coloured or not. Such sections are often better than attempts at very thin sections unless very specialised techniques are used. There are few satisfactory thicknesses between the two extremes; the thick sections you can do and the very thin requiring expert techniques.