He had two assistants, either brothers or nephews, and they knew the secret of his process. They had worked with him, and they continued his art into the reign of Henry IV. One of their productions shows that king surrounded by his family. But these successors had not the artistic instinct or touch of the master. They had little originality, and speedily became servile copyists, so that Palissy ware for a time lost the high place it had held. But these successors did not hand on the secret, and when no more of the ware was forthcoming good judges of the potter’s art found it easy to distinguish between the work of Bernard and of his followers, and his own porcelain was again enthroned among the greatest productions of French art. Connoisseurs of to-day find it easy to know real Palissy ware.

Such is the story of a great artist of the Renaissance in France, of a man born with the love of beauty, who found a new way of giving the world delight, and who overcame what seemed almost superhuman trials.


III
GALILEO AND THE TELESCOPE
1564-1642

Three days before the death of the great Italian Michael Angelo, in the year 1564, there was born in Pisa a boy who was given the name of Galileo Galilei, and who was destined to become one of the greatest philosophers and inventors the world has ever known. He came of a noble family of Florence, which had originally borne the name of Bonajuti, but had later changed it to that of Galilei, and he is usually known by his baptismal name of Galileo, according to the Italian custom of that age. His father was a merchant, engaged in business in Pisa, a man well versed in the Latin and Greek tongues, and well known for his knowledge of mathematics. He was anxious that each of his three sons should have a good education, and so he sent Galileo, his eldest boy, to the famous monastery of Vallombrosa, situated in a beautiful wooded valley not far from Florence. But the father did not intend his son to become a priest, and so, when he found his thoughts tending in that direction, he took him away from the monastery, planning to make him a merchant like himself.

But the mind of the young Galileo was already remarkably acute. He was a good musician, a skilful draughtsman and painter, something of a poet, and had shown considerable talent in designing and building a variety of toy machines. His father soon decided that his son’s bent did not lie in the direction of a dealer in cloths, and, casting about for a scientific career, chose that of medicine for Galileo. So he took up this study at the University of Pisa.

One afternoon the youth of eighteen went to the great Cathedral of the city. He knelt to make his devotions. From the roof of the nave hung a large bronze lamp, and as the boy watched he saw an attendant draw the lamp toward him to light it, and then let it swing back again. The swinging caught his attention, and he watched it with more and more interest. At first the arc of the swinging lamp was wide, but gradually it grew less and less. But what struck him as singular was that the oscillations all seemed to be made in the same time. He had no watch, so he put his fingers on his wrist in order to note the pulse-beats. As nearly as he could determine the swings of the lamp as they lessened were keeping the same times.

When he went home he began to experiment with this idea of the swinging lamp, or pendulum as it came to be called, and soon had constructed an instrument which marked with very fair accuracy the rate and variation of the pulse-beats. It was imperfect in many respects, but when he showed it to his teachers at the university they were delighted with it, and it was soon generally used by the physicians of the day under the name of the Pulsilogia.

But, to his father’s dismay, the young Galileo did not show great interest in the study of medicine. Instead he spent his time studying the mathematics of Euclid, and from them went on to the writings of Archimedes and the laws of mechanics. These latter absorbed him, and fresh from reading them he constructed for himself a hydrostatic balance, the purpose of which was to ascertain accurately the relative proportions of any two metals in an alloy. He wrote an essay on his invention, and circulated it among his friends and teachers. This added to his reputation as a scientist, but brought him no money. His family were poor, and he needed a means of support, and so he applied for, and after a time obtained, appointment to the post of Professor of Mathematics at the University of Pisa.