Scores of men claimed to have invented telephones before Bell did, but none ever proved their claims. Men who were studying improvements on the telegraph had glimpses of the ultimate possibility of transmitting speech by wire, and Elisha Gray filed a caveat on that point later on the very day that Bell filed his application for a patent. But Gray’s was a caveat, or a declaration that the applicant believes he can invent a certain device, and Bell’s was the statement that he had already perfected his invention. Bell’s claim stood against the world, and men now recognize that the telephone was born on that afternoon in June, 1875, when the young teacher of deaf-mutes first caught the faint twang of a snapping reed sent across a few yards of wire.


XIV
EDISON AND THE ELECTRIC LIGHT
1847-

To some men the material world is always presenting itself in the form of a series of fascinating puzzles, to be solved as one might work out a game of chess. The astronomer is given certain figures, and from those he intends to derive certain laws; the scientist knows the properties of certain materials and from those he is to reach some new combination that will produce a new result. He is not an inventor as much as he is a detective; he picks up the clews to certain happenings and constructs a working theory to fit them. In mechanics this theory that he constructs usually takes the form of a machine. And this machine is not so much a new discovery as it is the practical working-out of certain carefully-selected laws of nature.

Perhaps there has never been a man whose thoughts were so continually asking the question why as Thomas Alva Edison. Certainly there has never been one who has found the answer to that question in so many lines of scientific study. He has not merely happened on his discoveries. He has not been as much interested in the result as in the reasons for it. He belongs to the experimenting age. Once on a time men took the facts of nature for granted. But if they had always done so there would have been no telegraph, no telephone, no electric light, no phonograph. Each of these were achieved by working on a definite problem, and in no haphazard way. The inventor has become a scientist and a mechanic, and no longer an amateur discoverer. Chance has much less to do with the winning of new knowledge than it once had.

A visitor to Edison’s laboratory tells how he found him holding a vial of some liquid to the light. After a long look at it he put the vial down on the table, and resting his head in his hands, stared intently at it, as if he expected the vial to make some answer. Then he picked it up, shook it, and held it again to the light. The visitor introduced himself. Edison nodded toward the bottle. “Take a look at those filings,” said he. “See how curiously they settle when I shake the bottle. In alcohol they behave one way, but in oil in this way. Isn’t that the most curious thing you ever saw—better than a play at one of your city theatres, eh?” Again he shook the vial. “What I want to know is what they mean by it; and I’m going to find out.” There is the man, he wants to know “what they mean by it,” he continually asks the question why, he is the great experimenter among great inventors.

Edison has shown the calibre of his mind in a score of different ways. He has been showing it ever since the days when he was a newsboy on the trains of the Canadian Grand Trunk Railroad and the Michigan Central. Then he fitted up a corner of the baggage-car of his train as a miniature laboratory, and filled it with the bottles and retorts that had been discarded at the railroad workshops. Among his treasures was a copy of Fresenius’s “Qualitative Analysis,” engaging reading for a boy only twelve years old. But he was not only a chemist. When he was not working on the train he would be hanging about machine shops, listening and watching and considering. One day the manager of the Detroit Free Press told him he might have some three hundred pounds of old type that had been used up. The newsboy found an old hand-press and began to print a paper himself, called the Grand Trunk Herald, and sold it to the employees and regular passengers on his line. Usually he would set the type before the train started, and print it in the spare moments of his trip. Sometimes one of the station-masters on the run, who was also a telegraph operator, would get a piece of important news, write it down, and hand the paper to Edison as the train stopped. Then the boy would go to his shop in the caboose, set up the item, print it, and sell it, beating the daily newspapers that might be awaiting the passengers at the end of the ride.

The new invention of the telegraph, and the great possibilities of its use, early caught his attention. About the time the Civil War began the newsboy adopted a new idea in his business. He had always found it difficult to know how many newspapers to carry on each trip. If he had too large a stock some would be left on his hands, if he carried too few he would be sold out early and lose a good profit. He made a friend of one of the compositors of the Detroit Free Press, and got him to show him the proofs of the paper. That gave him some idea of the news of the day, and he could judge how many papers he would probably need. One day the proof-slip told him that there had been a terrific battle at Pittsburg Landing, or Shiloh, and that sixty thousand men had been killed and wounded. He knew that this would sell the paper. All he needed was to let people get an inkling of what the news was.

Edison dashed to the telegraph-operator and asked if he would wire a message to each of the large stations on the railroad line requesting the station-masters to chalk up a notice on their train bulletin-board, giving the fact that there had been a great battle, and that papers telling about it would reach the station at such an hour. In return he offered the operator newspaper service for six months free. The bargain was made, and the boy hurried to the newspaper office.