The phonograph is his achievement, and the practical development of the kinetoscope. He has built electric locomotives and run them, he has made many discoveries in regard to platinum. His better known patents include developments of the electric lamp, the telephone, storage-batteries, ore-milling machinery, typewriters, electric pens, vocal engines, addressing machines, cast-iron furniture, wire-drawing, methods of preserving fruit, moving-picture machines, compressed-air machines, and the manufacture of plate glass. He took out a patent covering wireless telegraphy in 1891, but other matters were then absorbing his attention, and he was quite willing to yield that field to the brilliant Italian, Marconi. He feels no jealousy for other inventors. He knows how vast the field is, and how many paths constantly beckon him.

It is doubtless true that the great inventors are born and not made, but many of them seem, nevertheless, to have drifted into the work that gave them fame, or to have hit by chance on their compelling idea. It was not so with Edison. He was beyond any doubt born an inventor. With him to see was to ask the question why, and to ask that question was to start his thoughts on the train that was to bring him to the answer.


XV
MARCONI AND THE WIRELESS TELEGRAPH
1874-

At first sight the wireless telegraph seems the most wonderful of all inventions and discoveries, the one that is least easy to understand, and that most nearly approaches that magic which is above all nature’s laws. Even if we do come to understand it it loses nothing of its wonder, and the last impression is very like the first. We can understand how an electric current travels through a wire, even if we cannot understand electricity, but how that current can travel through limitless space and yet reach its destination strains the imagination. Yet wireless telegraphy is not a matter of the imagination, but of exact, demonstrable science.

On December 12, 1901, a quiet, dark-skinned young man sat, about noontime, in a room of the old barracks building on Signal Hill, near St. John’s, Newfoundland. On the table in front of him was a mechanical apparatus, with an ordinary telephone receiver at its side. The window was partly open, and a wire led from the machine on the table through the window to a gigantic kite that a high wind kept flying fully 400 feet above the room. The young man picked up the receiver, and held it to his ear for a long time. His face showed no sign of excitement, though an assistant, standing near him, could barely keep still. Then, suddenly, came the sharp click of the “tapper” as it struck the “coherer.” That meant that something was coming. The young man listened a few minutes, and then handed the receiver to his assistant. “See if you can hear anything, Mr. Kemp,” said he. The other man took the receiver, and a moment later his ear caught the sound of three little clicks, faint, but distinct and unmistakable, the three dots of the letter S in the Morse Code. Those clicks had been sent from Poldhu, on the Cornish coast of England, and they had traveled through air across the Atlantic Ocean without any wire to guide them. That was one of the great moments of history. The young man at the table was Guglielmo Marconi, an Italian.

We know that it is no injustice to a great inventor to say that other men had imagined what he achieved, and had earlier tried to prove their theories. It takes nothing from the glory of that other great Italian, Columbus, to recall that other sailors had planned to cross the sea to the west of Europe and that some had tried it. So James Clerk-Maxwell had proved by mathematics the electro-magnetic theory of light in 1864, and Heinrich Hertz had demonstrated in 1888 by actual experiment that electric waves exist in the free ether, and Edison had for a time worked on the problem of a wireless telegraph. Marconi devised the last link that made the wonder possible, and caught the first click that came across the sea, and to him belong the palms. Judge Townsend, in deciding a suit in a United States court in 1905, declared, “It would seem, therefore, to be a sufficient answer to the attempts to belittle Marconi’s great invention that, with the whole scientific world awakened by the disclosures of Hertz in 1887 to the new and undeveloped possibilities of electric waves, nine years elapsed without a single practical or commercially successful result, and Marconi was the first to describe and the first to achieve the transmission of definite intelligible signals by means of these Hertzian waves.”

Marconi was born at Villa Griffone, near Bologna, in 1874, so that he was under thirty when he caught that first transatlantic message. He studied at Leghorn under Professor Rosa, and later at the University of Bologna with Professor Righi. He was always absorbed in science, and experimented, holiday after holiday, on his father’s estate. He was precocious to an extraordinary degree, for in 1895, when only twenty-one, he had produced a wireless transmitting apparatus that he patented in Italy. Within a year he had taken out patents in England and in other European countries, and had proposed a wireless telegraph system to the English Post-Office Department. That Department, through Sir William Henry Preece, Engineer-in-Chief of Telegraphs, took up the subject, and reported very favorably on the Marconi System. Marconi himself, at the House of Commons, telegraphed by wireless across the Thames, a distance of 250 yards. In June, 1897, he sent a message nine miles, in July twelve miles, and in 1898 he succeeded in sending one across the English Channel to France, thirty-two miles. In 1901 he covered a space of 3,000 miles.