With a knowledge of electro-magnetic waves, with a high-power oscillator, and a sensitive coherer, it remained for Marconi to connect an antenna to the transmitter, and thus secure a wide and practicable working field for the sending and receiving of his messages. This he did in 1896, and it was this addition that made the wireless telegraph of real use to men. Improvements in the transmitter and receiver have constantly increased the power of the invention, and have gradually allowed him to employ it over greater and greater distances.

With Marconi’s successful demonstrations of wireless in England its use at once began. The Trinity House installed a station at the East Goodwin Lighthouse, which communicated with shore and proved of the greatest value in preventing shipwrecks. The Marconi Wireless Telegraph Company was organized in 1897, and made agreements to erect coast stations for the Italian, Canadian, and Newfoundland governments, and for Lloyd’s. The great shipping lines established wireless stations on their vessels, and the antenna were soon to be seen on points of vantage along every coast. On December 12, 1901, Marconi in Newfoundland caught the message sent from Cornwall; on January 19, 1903, President Roosevelt sent the first “official” wireless message across the Atlantic to Edward VII, and in October, 1905, a message was sent from England across the mountains, valleys and cities of Europe to the battle-ship Renown, stationed at the entrance to the Suez Canal.

Wireless Station in New York City, Showing the Antenna

The system of operating wireless telegraphy is in some respects similar to that of the ordinary telegraph. The Morse Code is largely used in America, and a modification of it, called the Continental Code, in Europe. When the wireless operator wishes to send a message to another station he “listens in,” as it is called, by connecting his receiving apparatus with the adjacent antenna and the ground. He has the telephone receiver attached to his ears. Next he adjusts his receiving circuits for a number of wave lengths. If he catches no signals in his telephone receiver he understands that no messages are being sent within his area. Then he “throws in” the transmitting apparatus, which automatically disconnects the receiving end. He gives the letters that stand for the station with which he wants to communicate, and adds the letters of his own station. He does this a number of times, to insure the other station picking up the call. Then he “listens in,” and if he receives the clicks that show that the other station has heard him he is ready to establish regular telegraphic communication.

A number of distant stations may be sending messages simultaneously. In that case the operator tunes his instrument, or in other words adjusts his apparatus to suit the wave length of the station with which he wishes to communicate. In this way he “tunes out” the other messages, and receives only the one he wants. If, however, the stations that are sending simultaneously happen to be situated near together, as in the case of several vessels near a shore station, the operator is often unable to do this “tuning out,” and must try to catch the message he wishes by the sound of the “spark” of the transmitting station, if he can in any way distinguish it from the “sparks” of the other messages.

There are several ways of determining when the two circuits are in tune. One is to insert a hot-wire current meter between the antenna and the inductance, which indicates the strength of the oscillatory current that has been established. A maximum reading can then be made by manipulating the flexible connections, and this will show whether the two circuits are in accord. The other method is by using a device that indicates the wave length. This measures the frequency of one circuit, and then the other circuit can be adjusted to give a corresponding wave length. The larger the antenna the longer will be the wave length and the greater the power of the apparatus. It is usual to employ a short wave length for low-power, short-distance equipments, and a long wave length for the high-power, long-distance stations.

Wireless telegraphy has already proved itself of the greatest value on the ocean. It has sent news of storms and wrecks across tossing seas and brought rescue to scores of voyagers. Ships may now keep in constant communication with their offices on shore. The great lines send Marconigrams to each other in mid-ocean, and publish daily papers giving the latest news of the whole world. Greater distances have so far been covered over water than over land, but this branch of the service is being rapidly developed, and it must prove in time of the greatest value across deserts and wild countries, where a regular telegraph service would be impracticable. In such a country as Alaska, where there are constant heavy sleet and snow storms, the wireless should prove invaluable.

The telegraph and cable companies did their best to ignore the claims of the wireless systems, but they have been compelled to acknowledge them at last. Rival companies have sprung up, using slightly different varieties of apparatus. Each of the big companies that were ready to compete with the Marconi Company by 1906, the German Telefunken Company, the American National Electric Signaling Company, the American De Forest Company, and the British Lodge-Muirhead Wireless Syndicate, had certain peculiar advantages over the others. The laws relating to the uses of wireless, and especially the rights of governments to the sole use of the systems in case of war, are in a confused condition, but eventually order must come from this chaos as it did in the history of the telephone and telegraph.

Wireless has brought the possibility of communication between any two individuals, no matter where they may be situated, within the realm of fact. A severing of communication with any part of the world will be impossible. Storms and earthquakes that destroy telegraph systems, enemies that cut submarine cables, cannot prevent the sending of Marconigrams. The African explorer and the Polar adventurer can each talk with his countrymen. The use of this agency is still in its earliest youth, but it has already done so much that it is impossible to say to what a stature it may grow. It should cut down the rates for using wire and cable systems, and ultimately place the means of communicating directly with any one on land or sea within the reach of every man. All the world’s information will be at the instant disposal of whomsoever needs it, and all this is due to those electro-magnetic waves that permeate the ether, waiting to be put into service at the touch of man.