But the inventions by which his fame became most extensively known arose out of circumstances connected with the cotton manufactures of Manchester and the neighbourhood. The great improvements which he introduced in the machine for making weavers' reeds, led to the formation of the firm of Sharp, Roberts, and Co., of which Mr. Roberts was the acting mechanical partner for many years. Not less important were his improvements in power-looms for weaving fustians, which were extensively adopted. But by far the most famous of his inventions was unquestionably his Self-acting Mule, one of the most elaborate and beautiful pieces of machinery ever contrived. Before its invention, the working of the entire machinery of the cotton-mill, as well as the employment of the piecers, cleaners, and other classes of operatives, depended upon the spinners, who, though receiving the highest rates of pay, were by much the most given to strikes; and they were frequently accustomed to turn out in times when trade was brisk, thereby bringing the whole operations of the manufactories to a standstill, and throwing all the other operatives out of employment. A long-continued strike of this sort took place in 1824, when the idea occurred to the masters that it might be possible to make the spinning-mules run out and in at the proper speed by means of self-acting machinery, and thus render them in some measure independent of the more refractory class of their workmen. It seemed, however, to be so very difficult a problem, that they were by no means sanguine of success in its solution. Some time passed before they could find any mechanic willing so much as to consider the subject. Mr. Ashton of Staley-bridge made every effort with this object, but the answer he got was uniformly the same. The thing was declared to be impracticable and impossible. Mr. Ashton, accompanied by two other leading spinners, called on Sharp, Roberts, and Co., to seek an interview with Mr. Roberts. They introduced the subject to him, but he would scarcely listen to their explanations, cutting them short with the remark that he knew nothing whatever about cotton-spinning. They insisted, nevertheless, on explaining to him what they required, but they went away without being able to obtain from him any promise of assistance in bringing out the required machine.
The strike continued, and the manufacturers again called upon Mr. Roberts, but with no better result. A third time they called and appealed to Mr. Sharp, the capitalist of the firm, who promised to use his best endeavours to induce his mechanical partner to take the matter in hand. But Mr. Roberts, notwithstanding his reticence, had been occupied in carefully pondering the subject since Mr. Ashton's first interview with him. The very difficulty of the problem to be solved had tempted him boldly to grapple with it, though he would not hold out the slightest expectation to the cotton-spinners of his being able to help them in their emergency until he saw his way perfectly clear. That time had now come; and when Mr. Sharp introduced the subject, he said he had turned the matter over and thought he could construct the required self-acting machinery. It was arranged that he should proceed with it at once, and after a close study of four months he brought out the machine now so extensively known as the self-acting mule. The invention was patented in 1825, and was perfected by subsequent additions, which were also patented.
Like so many other inventions, the idea of the self-acting mule was not new. Thus Mr. William Strutt of Derby, the father of Lord Belper, invented a machine of this sort at an early period; Mr. William Belly, of the New Lanark Mills, invented a second; and various other projectors tried their skill in the same direction; but none of these inventions came into practical use. In such cases it has become generally admitted that the real inventor is not the person who suggests the idea of the invention, but he who first works it out into a practicable process, and so makes it of practical and commercial value. This was accomplished by Mr. Roberts, who, working out the idea after his own independent methods, succeeded in making the first self-acting mule that would really act as such; and he is therefore fairly entitled to be regarded as its inventor.
By means of this beautiful contrivance, spindle-carriages; bearing hundreds of spindles, run themselves out and in by means of automatic machinery, at the proper speed, without a hand touching them; the only labour required being that of a few boys and girls to watch them and mend the broken threads when the carriage recedes from the roller beam, and to stop it when the cop is completely formed, as is indicated by the bell of the counter attached to the working gear. Mr. Baines describes the self-acting mule while at work as "drawing out, twisting, and winding up many thousand threads, with unfailing precision and indefatigable patience and strength—a scene as magical to the eye which is not familiarized with it, as the effects have been marvellous in augmenting the wealth and population of the country." [5]
Mr. Roberts's great success with the self-acting mule led to his being often appealed to for help in the mechanics of manufacturing. In 1826, the year after his patent was taken out, he was sent for to Mulhouse, in Alsace, to design and arrange the machine establishment of Andre Koechlin and Co.; and in that and the two subsequent years he fairly set the works a-going, instructing the workmen in the manufacture of spinning-machinery, and thus contributing largely to the success of the French cotton manufacture. In 1832 he patented his invention of the Radial Arm for "winding on" in the self-acting mule, now in general use; and in future years he took out sundry patents for roving, slubbing, spinning, and doubling cotton and other fibrous materials; and for weaving, beetling, and mangling fabrics of various sorts.
A considerable branch of business carried on by the firm of Sharp, Roberts, and Co. was the manufacture of iron billiard-tables, which were constructed with almost perfect truth by means of Mr. Roberts's planing-machine, and became a large article of export. But a much more important and remunerative department was the manufacture of locomotives, which was begun by the firm shortly after the opening of the Liverpool and Manchester Railway had marked this as one of the chief branches of future mechanical engineering. Mr. Roberts adroitly seized the opportunity presented by this new field of invention and enterprise, and devoted himself for a time to the careful study of the locomotive and its powers. As early as the year 1829 we find him presenting to the Manchester Mechanics' Institute a machine exhibiting the nature of friction upon railroads, in solution of the problem then under discussion in the scientific journals. In the following year he patented an arrangement for communicating power to both driving-wheels of the locomotive, at all times in the exact proportions required when turning to the right or left,—an arrangement which has since been adopted in many road locomotives and agricultural engines. In the same patent will be found embodied his invention of the steam-brake, which was also a favourite idea of George Stephenson, since elaborated by Mr. MacConnell of the London and North-Western Railway. In 1834, Sharp, Roberts, and Co. began the manufacture of locomotives on a large scale; and the compactness of their engines, the excellence of their workmanship, and the numerous original improvements introduced in them, speedily secured for the engines of the Atlas firm a high reputation and a very large demand. Among Mr. Roberts's improvements may be mentioned his method of manufacturing the crank axle, of welding the rim and tyres of the wheels, and his arrangement and form of the wrought-iron framing and axle-guards. His system of templets and gauges, by means of which every part of an engine or tender corresponded with that of every other engine or tender of the same class, was as great an improvement as Maudslay's system of uniformity of parts in other descriptions of machinery.
In connection with the subject of railways, we may allude in passing to Mr. Roberts's invention of the Jacquard punching machine—a self-acting tool of great power, used for punching any required number of holes, of any pitch and to any pattern, with mathematical accuracy, in bridge or boiler plates. The origin of this invention was somewhat similar to that of the self-acting mule. The contractors for the Conway Tubular Bridge while under construction, in 1848, were greatly hampered by combinations amongst the workmen, and they despaired of being able to finish the girders within the time specified in the contract. The punching of the iron plates by hand was a tedious and expensive as well as an inaccurate process; and the work was proceeding so slowly that the contractors found it absolutely necessary to adopt some new method of punching if they were to finish the work in time. In their emergency they appealed to Mr. Roberts, and endeavoured to persuade him to take the matter up. He at length consented to do so, and evolved the machine in question during his evening's leisure—for the most part while quietly sipping his tea. The machine was produced, the contractors were enabled to proceed with the punching of the plates independent of the refractory men, and the work was executed with a despatch, accuracy, and excellence that would not otherwise have been possible. Only a few years since Mr. Roberts added a useful companion to the Jacquard punching machine, in his combined self-acting machine for shearing iron and punching both webs of angle or T iron simultaneously to any required pitch; though this machine, like others which have proceeded from his fertile brain, is ahead even of this fast-manufacturing age, and has not yet come into general use, but is certain to do so before many years have elapsed.
These inventions were surely enough for one man to have accomplished; but we have not yet done. The mere enumeration of his other inventions would occupy several pages. We shall merely allude to a few of them. One was his Turret Clock, for which he obtained the medal at the Great Exhibition of 1851. Another was his Prize Electro-Magnet of 1845. When this subject was first mentioned to him, he said he did not know anything of the theory or practice of electro-magnetism, but he would try and find out. The result of his trying was that he won the prize for the most powerful electro-magnet: one is placed in the museum at Peel Park, Manchester, and another with the Scottish Society of Arts, Edinburgh. In 1846 he perfected an American invention for making cigars by machinery; enabling a boy, working one of his cigar-engines, to make as many as 5000 in a day. In 1852 he patented improvements in the construction, propelling, and equipment of steamships, which have, we believe, been adopted to a certain extent by the Admiralty; and a few years later, in 1855, we find him presenting the Secretary of War with plans of elongated rifle projectiles to be used in smooth-bore ordnance with a view to utilize the old-pattern gun. His head, like many inventors of the time, being full of the mechanics of war, he went so far as to wait upon Louis Napoleon, and laid before him a plan by which Sebastopol was to be blown down. In short, upon whatever subject he turned his mind, he left the impress of his inventive faculty. If it was imperfect, he improved it; if incapable of improvement, and impracticable, he invented something entirely new, superseding it altogether. But with all his inventive genius, in the exercise of which Mr. Roberts has so largely added to the productive power of the country, we regret to say that he is not gifted with the commercial faculty. He has helped others in their difficulties, but forgotten himself. Many have profited by his inventions, without even acknowledging the obligations which they owed to him. They have used his brains and copied his tools, and the "sucked orange" is all but forgotten. There may have been a want of worldly wisdom on his part, but it is lamentable to think that one of the most prolific and useful inventors of his time should in his old age be left to fight with poverty.
Mr. Whitworth is another of the first-class tool-makers of Manchester who has turned to excellent account his training in the workshops of Maudslay and Clement. He has carried fully out the system of uniformity in Screw Threads which they initiated; and he has still further improved the mechanism of the planing machine, enabling it to work both backwards and forwards by means of a screw and roller motion. His "Jim Crow Machine," so called from its peculiar motion in reversing itself and working both ways, is an extremely beautiful tool, adapted alike for horizontal, vertical, or angular motions. The minute accuracy of Mr. Whitworth's machines is not the least of their merits; and nothing will satisfy him short of perfect truth. At the meeting of the Institute of Mechanical Engineers at Glasgow in 1856 he read a paper on the essential importance of possessing a true plane as a standard of reference in mechanical constructions, and he described elaborately the true method of securing it,—namely, by scraping, instead of by the ordinary process of grinding. At the same meeting he exhibited a machine of his invention by which he stated that a difference of the millionth part of an inch in length could at once be detected. He also there urged his favourite idea of uniformity, and proper gradations of size of parts, in all the various branches of the mechanical arts, as a chief means towards economy of production—a principle, as he showed, capable of very extensive application. To show the progress of tools and machinery in his own time, Mr. Whitworth cited the fact that thirty years since the cost of labour for making a surface of cast-iron true—one of the most important operations in mechanics—by chipping and filing by the hand, was 12s. a square foot; whereas it is now done by the planing machine at a cost for labour of less than a penny. Then in machinery, pieces of 74 reed printing-cotton cloth of 29 yards each could not be produced at less cost than 30s. 6d. per piece; whereas the same description is now sold for 3s. 9d. Mr. Whitworth has been among the most effective workers in this field of improvement, his tools taking the first place in point of speed, accuracy, and finish of work, in which respects they challenge competition with the world. Mr. Whitworth has of late years been applying himself with his accustomed ardour to the development of the powers of rifled guns and projectiles,—a branch of mechanical science in which he confessedly holds a foremost place, and in perfecting which he is still occupied.
[1] Engineer, Oct. 10th, 1862.