Later in the autumn, preparations were made for proceeding with the foundations of the eastern main pier on the Bangor side of the Strait. After excavating the beach to a depth of 7 feet, a solid mass of rock was reached, which served the purpose of an immoveable foundation for the pier. At the same, time workshops were erected; builders, artisans, and labourers were brought together from distant quarters; vessels and barges were purchased or built for the special purpose of the work; a quay was constructed at Penmon Point for loading the stones for the piers; and all the requisite preliminary arrangements were made for proceeding with the building operations in the ensuing spring.

A careful specification of the masonry work was drawn up, and the contract was let to Messrs. Stapleton and Hall; but as they did not proceed satisfactorily, and desired to be released from the contract, it was relet on the same terms to Mr. John Wilson, one of Mr. Telford's principal contractors for mason work on the Caledonian Canal. The building operations were begun with great vigour early in 1820. The three arches on the Caernarvonshire side and the four on the Anglesea side were first proceeded with. They are of immense magnitude, and occupied four years in construction, having been finished late in the autumn of 1824. These piers are 65 feet in height from high-water line to the springing of the arches, the span of each being 52 feet 6 inches. The work of the main piers also made satisfactory progress, and the masonry proceeded so rapidly that stones could scarcely be got from the quarries in sufficient quantity to keep the builders at work. By the end of June about three hundred men were employed.

The two principal piers, each 153 feet in height, upon which the main chains of the bridge were to be suspended, were built with great care and under rigorous inspection. In these, as indeed in most of the masonry of the bridge, Mr. Telford adopted the same practice which he had employed in his previous bridge structures, that of leaving large void spaces, commencing above high water mark and continuing them up perpendicularly nearly to the level of the roadway. "I have elsewhere expressed my conviction," he says, when referring to the mode of constructing these piers, "that one of the most important improvements which I have been able to introduce into masonry consists in the preference of cross-walls to rubble, in the structure of a pier, or any other edifice requiring strength. Every stone and joint in such walls is open to inspection in the progress of the work, and even afterwards, if necessary; but a solid filling of rubble conceals itself, and may be little better than a heap of rubbish confined by side walls." The walls of these main piers were built from within as well as from without all the way up, and the inside was as carefully and closely cemented with mortar as the external face. Thus the whole pier was bound firmly together, and the utmost strength given, while the weight of the superstructure upon the lower parts of the work was reduced to its minimum.

[Image] Section of Main Pier

Over the main piers, the small arches intended for the roadways were constructed, each being 15 feet to the springing of the arch, and 9 feet wide. Upon these arches the masonry was carried upwards, in a tapering form, to a height of 53 feet above the level of the road. As these piers were to carry the immense weight of the suspension chains, great pains were taken with their construction, and all the stones, from top to bottom, were firmly bound together with iron dowels to prevent the possibility of their being separated or bulged by the immense pressure they had to withstand.

The most important point in the execution of the details of the bridge, where the engineer had no past experience to guide him, was in the designing and fixing of the wrought iron work. Mr. Telford had continued his experiments as to the tenacity of bar iron, until he had obtained several hundred distinct tests; and at length, after the most mature delilberation, the patterns and dimensions were finally arranged by him, and the contract for the manufacture of the whole was let to Mr. Hazeldean, of Shrewsbury, in the year 1820. The iron was to be of the best Shropshire, drawn at Upton forge, and finished and proved at the works, under the inspection of a person appointed by the engineer.

[Image] Cut showing fixing of the chains in the rock

The mode by which the land ends of these enormous suspension chains were rooted to the solid ground on either side of the Strait, was remarkably ingenious and effective. Three oblique tunnels were made by blasting the rock on the Anglesea side; they were each about six feet in diameter, the excavations being carried down an inclined plane to the depth of about twenty yards. A considerable width of rock lay between each tunnel, but at the bottom they were all united by a connecting horizontal avenue or cavern, sufficiently capacious to enable the workmen to fix the strong iron frames, composed principally of thick flat cast iron plates, which were engrafted deeply into the rock, and strongly bound together by the iron work passing along the horizontal avenue; so that, if the iron held, the chains could only yield by tearing up the whole mass of solid rock under which they were thus firmly bound.

A similar method of anchoring the main chains was adopted on the Caernarvonshire side. A thick bank of earth had there to be cut through, and a solid mass of masonry built in its place, the rock being situated at a greater distance from the main pier; involving a greater length of suspending chain, and a disproportion in the catenary or chord line on that side of the bridge. The excavation and masonry thereby rendered necessary proved a work of vast labour, and its execution occupied a considerable time; but by the beginning of the year 1825 the suspension pyramids, the land piers and arches, and the rock tunnels, had all been completed, and the main chains were firmly secured in them; the work being sufficiently advanced to enable the suspending of the chains to be proceeded with. This was by far the most difficult and anxious part of the undertaking.

With the same careful forethought and provision for every contingency which had distinguished the engineer's procedure in the course of the work, he had made frequent experiments to ascertain the actual power which would be required to raise the main chains to their proper curvature. A valley lay convenient for the purpose, a little to the west of the bridge on the Anglesea side. Fifty-seven of the intended vertical suspending rods, each nearly ten feet long and an inch square, having been fastened together, a piece of chain was attached to one end to make the chord line 570 feet in length; and experiments having been made and comparisons drawn, Mr. Telford ascertained that the absolute weight of one of the main chains of the bridge between the points of suspension was 23 1/2 tons, requiring a strain of 39 1/2 tons to raise it to its proper curvature. On this calculation the necessary apparatus required for the hoisting was prepared. The mode of action finally determined on for lifting the main chains, and fixing them into their places, was to build the central portion of each upon a raft 450 feet long and 6 feet wide, then to float it to the site of the bridge, and lift it into its place by capstans and proper tackle.