It will be easy to show how closely the superficial inequalities agree with those which we might naturally expect to originate during the gradual rise of the Wealden district. Suppose the line of the most energetic movement to have coincided with what is now the central ridge of the Weald valley; in that case the first land which emerged must have been situated where the Forest ridge is now placed. Here many shoals and reefs may first have existed, and islands of chalk devoured in the course of ages by the ocean (see [fig. 253.]); so that the top of the shattered dome which first appeared above water may have been utterly destroyed, and the masses represented by the fainter lines ([fig. 253.]) removed.
The dotted lines represent the sea-level.
The upper greensand is represented ([fig. 259.]) as forming on the left hand a single precipice with the chalk; while on the right there are two cliffs, with an intervening terrace, as before described in [fig. 258.] Two strips of land would then remain on each side of a channel, presenting ranges of white cliffs facing each other. A powerful current might then scoop out a channel in the gault (No. 2.). This softer bed would yield with ease in proportion as parts of it were brought up from time to time and exposed to the fury of the waves, so that large spaces occupied by the harder formation or greensand (No. 3.) would be laid bare. This last rock, opposing a more effectual resistance, would next emerge; while the chalk cliffs, at the base of which the gault is rapidly undermined, would recede farther from each other, after which four parallel strips of land, or rows of islands, would be caused, which are represented by the masses which in [fig. 260.] rise above the dotted line indicating the sea-level. In this diagram, however, the inclination of the upper surface of the formations (Nos. 1. and 3.), is exaggerated. Originally this surface must have been level, like the submarine terraces produced by denudation, and described before ([p. 74.] and [77.]); but they were afterwards more and more tilted by that general movement to which the region of the Weald owes its structure. At length, by the farther elevation of the dome-shaped mass, the clay (No. 4.) would be brought within reach of the waves, which would probably gain the more easy access to the subjacent deposit by the rents which would be caused in No. 3., and in the central part of the ridge where the uplifting force had been exerted with the greatest energy. The opposite cliffs, in which the greensand (No. 3.) terminates, would now begin to recede from each other, having at their base a yielding stratum of clay (No. 4.). Lastly, the sea would penetrate to the sand (No. 5.), and then the state of things indicated in the dark lines of the upper section ([fig. 253.]), would be consummated.
Fig. 261.
The Coomb, near Lewes.
It was stated that there are many lines of flexure and dislocation, running east and west, or parallel to the central axis of the Wealden. They are numerous in the district of the Hastings sand, and sometimes occur in the chalk itself. One of the latter kind has given rise to the ravine called the Coomb, near Lewes, and was first traced out by Dr. Mantell, in whose company I examined it. This coomb is seen on the eastern side of the valley of the Ouse, in the suburbs of the town of Lewes. The steep declivities on each side are covered with green turf, as is the bottom, which is perfectly dry. No outward signs of disturbance are visible; and the connection of the hollow with subterranean movements would not have been suspected by the geologist, had not the evidence of great convulsions been clearly exposed in the escarpment of the valley of the Ouse, and the numerous chalk pits worked at the termination of the Coomb. By the aid of these we discover that the ravine coincides precisely with a line of fault, on one side of which the chalk with flints (a, [fig. 262.]), appears at the summit of the hill, while it is thrown down to the bottom on the other.