Mr. Martin, in his work on the geology of Western Sussex, published in 1828, threw much light on the structure of the Wealden by tracing out continuously for miles the direction of many anticlinal lines and cross fractures; and the same course of investigation has since been followed out in greater detail by Mr. Hopkins. The mathematician last-mentioned has shown that the observed direction of the lines of flexure and dislocation in the Weald district coincide with those which might have been anticipated theoretically on mechanical principles, if we assume certain simple conditions under which the strata were lifted up by an expansive subterranean force. He finds by calculation that if this force was applied so as to act uniformly upwards within an elliptic area, the longitudinal fissures thereby produced would nearly coincide with the outlines of the ellipse, forming cracks, which are portions of smaller concentric ellipses, parallel to the margin of the larger one. These longitudinal fissures would also be intercepted by others running at right angles to them, and both lines of fracture may have been produced at the same time.[251-A] In this illustration it is supposed that the expansive force acted simultaneously and with equal intensity at every point within the upheaved area, and not with greater energy along the central axis or region of principal elevation.
Fig. 262.
Fault in the cliff hills near Lewes. Mantell.
- a. Chalk with flints.
- b. Lower chalk.[251-B]
The geologist cannot fail to derive great advantage in his speculations from the mathematical investigation of a problem of this kind, where results free from all uncertainty are obtained on the assumption of certain simple conditions. Such results, when once ascertained by mathematical methods, may serve as standard cases, to which others occurring in nature of a more complicated kind may be referred. In order that a uniform force should cause the strata to attain in the centre of the ellipse a height so far exceeding that which they have reached round the margin, it is necessary to assume that the mass of upheaved strata offered originally a very unequal degree of resistance to the subterranean force. This may have happened either from their being more fractured in one place than in another, or from being pressed down by a less weight of incumbent strata; as if we suppose, what is far from improbable, that great denudation had taken place in the middle of the Wealden before the final and principal upheaval occurred. It is suggested that the beds may have been acted upon somewhat in the manner of a carpet spread out loosely on a floor, and nailed down round the edges, which would swell into the shape of a dome if pressed up equally at every point by air admitted from beneath. But when we are reasoning on the particular phenomena of the Weald, we have no geological data for determining whether it be more probable that originally the resistance to be overcome was so extremely unequal in different places, or whether the subterranean force, instead of being everywhere uniform, was not applied with very different degrees of intensity beneath distinct portions of the upraised area.
The opinion that both the longitudinal and transverse lines of fracture may have been produced simultaneously, accords well with that expressed by M. Thurmann, in his work on the anticlinal ridges and valleys of elevation of the Bernese Jura.[252-A] For the accuracy of his map and sections I can vouch, from personal examination, in 1835, of part of the region surveyed by him. Among other results, at which this author arrived, it appears that the breadth of all the numerous anticlinal ridges and dome-shaped masses in the Jura is invariably great in proportion to the number of the formations exposed to view; or, in other words, to the depth to which the superimposed groups of secondary strata have been laid open. (See [fig. 71.] [p. 55.] for structure of Jura.) He also remarks, that the anticlinal lines are occasionally oblique and cross each other, in which case the greatest dislocation of the beds takes place. Some of the cross fractures are imagined by him to have been contemporaneous, others subsequent to the longitudinal ones.
I have assumed, in the former part of this chapter, that the rise of the Weald was gradual, whereas many geologists have attributed its elevation to a single effort of subterranean violence. There appears to them such a unity of effect in this and other lines of deranged strata in the south-east of England, such as that of the Isle of Wight, as is inconsistent with the supposition of a great number of separate movements recurring after long intervals of time. But we know that earthquakes are repeated throughout a long series of ages in the same spots, like volcanic eruptions. The oldest lavas of Etna were poured out many thousands, perhaps myriads of years before the newest, and yet they, and the movements accompanying their emission, have produced a symmetrical mountain; and if rivers of melted matter thus continue to flow in the same direction, and towards the same point, for an indefinite lapse of ages, what difficulty is there in conceiving that the subterranean volcanic force, occasioning the rise or fall of certain parts of the earth's crust, may, by reiterated movements, produce the most perfect unity of result?
Alluvium of the Weald.—Our next inquiry may be directed to the alluvium strewed over the surface of the supposed area of denudation. Has any wreck been left behind of the strata removed? To this we may answer, that the chalk downs even on their summits are covered every where with gravel composed of unrounded and partially rounded chalk flints, such as might remain after masses of white chalk had been softened and removed by water. This superficial accumulation of the hard or siliceous materials of the disintegrated strata may be due in some degree to pluvial action; for during extraordinary rains a rush of water charged with calcareous matter, of a milk-white colour, may be seen to descend even gently sloping hills of chalk. If a layer no thicker than the tenth of an inch be removed once in a century, a considerable mass may in the course of indefinite ages melt away, leaving nothing save a layer of flinty nodules to attest its former existence. These unrolled flints may remain mixed with others more or less rounded, which the waves left originally on the surface of the chalk, when it first emerged from the sea. A stratum of fine clay sometimes covers the surface of slight depressions and the bottom of valleys in the white chalk, which may represent the aluminous residue of the rock, after the pure carbonate of lime has been dissolved by rain water, charged with excess of carbonic acid derived from decayed vegetable matter.[253-A]