Test of age by relative position.—Unaltered fossiliferous strata of every age are met with reposing immediately on plutonic rocks; as at Christiania, in Norway, where the Newer Pliocene deposits rest on granite; in Auvergne, where the freshwater Eocene strata, and at Heidelberg, on the Rhine, where the New Red sandstone, occupy a similar place. In all these, and similar instances, inferiority in position is connected with the superior antiquity of granite. The crystalline rock was solid before the sedimentary beds were superimposed, and the latter usually contain in them rounded pebbles of the subjacent granite.

Test by intrusion and alteration.—But when plutonic rocks send veins into strata, and alter them near the point of contact, in the manner before described ([p. 442.]), it is clear that, like intrusive traps, they are newer than the strata which they invade and alter. Examples of the application of this test will be given in the sequel.

Test by mineral composition.—Notwithstanding a general uniformity in the aspect of plutonic rocks, we have seen in the last chapter that there are many varieties, such as Syenite, Talcose granite, and others. One of these varieties is sometimes found exclusively prevailing throughout an extensive region, where it preserves a homogeneous character; so that having ascertained its relative age in one place, we can easily recognize its identity in others, and thus determine from a single section the chronological relations of large mountain masses. Having observed, for example, that the syenitic granite of Norway, in which the mineral called zircon abounds, has altered the Silurian strata wherever it is in contact, we do not hesitate to refer other masses of the same zircon-syenite in the south of Norway to the same era.

Some have imagined that the age of different granites might, to a great extent, be determined by their mineral characters alone; syenite, for instance, or granite with hornblende, being more modern than common or micaceous granite. But modern investigations have proved these generalizations to have been premature. The syenitic granite of Norway already alluded to may be of the same age as the Silurian strata, which it traverses and alters, or may belong to the Old Red sandstone period; whereas the granite of Dartmoor, although consisting of mica, quartz, and felspar, is newer than the coal. (See [p. 456.])

Test by included fragments.—This criterion can rarely be of much importance, because the fragments involved in granite are usually so much altered, that they cannot be referred with certainty to the rocks whence they were derived. In the White Mountains, in North America, according to Professor Hubbard, a granite vein traversing granite, contains fragments of slate and trap, which must have fallen into the fissure when the fused materials of the vein were injected from below[450-A], and thus the granite is shown to be newer than certain superficial slaty and trappean formations.

Recent and Pliocene plutonic rocks, why invisible.—The explanation already given in the 29th and in the last chapter, of the probable relation of the plutonic to the volcanic formations, will naturally lead the reader to infer, that rocks of the one class can never be produced at or near the surface without some members of the other being formed below simultaneously, or soon afterwards. It is not uncommon for lava-streams to require more than ten years to cool in the open air; and where they are of great depth, a much longer period. The melted matter poured from Jorullo, in Mexico, in the year 1759, which accumulated in some places to the height of 550 feet, was found to retain a high temperature half a century after the eruption.[450-B] We may conceive, therefore, that great masses of subterranean lava may remain in a red-hot or incandescent state in the volcanic foci for immense periods, and the process of refrigeration may be extremely gradual. Sometimes, indeed, this process may be retarded for an indefinite period, by the accession of fresh supplies of heat; for we find that the lava in the crater of Stromboli, one of the Lipari Islands, has been in a state of constant ebullition for the last two thousand years; and we may suppose this fluid mass to communicate with some caldron or reservoir of fused matter below. In the Isle of Bourbon, also, where there has been an emission of lava once in every two years for a long period, the lava below can scarcely fail to have been permanently in a state of liquefaction. If then it be a reasonable conjecture, that about 2000 volcanic eruptions occur in the course of every century, either above the waters of the sea or beneath them[451-A], it will follow, that the quantity of plutonic rock generated, or in progress during the Recent epoch, must already have been considerable.

But as the plutonic rocks originate at some depth in the earth's crust, they can only be rendered accessible to human observation, by subsequent upheaval and denudation. Between the period when a plutonic rock crystallizes in the subterranean regions, and the era of its protrusion at any single point of the surface, one or two geological periods must usually intervene. Hence, we must not expect to find the Recent or Newer Pliocene granites laid open to view, unless we are prepared to assume that sufficient time has elapsed since the commencement of the Newer Pliocene period for great upheaval and denudation. A plutonic rock, therefore, must, in general, be of considerable antiquity relatively to the fossiliferous and volcanic formations, before it becomes extensively visible. As we know that the upheaval of land has been sometimes accompanied in South America by volcanic eruptions and the emission of lava, we may conceive the more ancient plutonic rocks to be forced upwards to the surface by the newer rocks of the same class formed successively below,—subterposition in the plutonic, like superposition in the sedimentary rocks, being usually characteristic of a newer origin.

In the accompanying diagram ([fig. 501.]), an attempt is made to show the inverted order in which sedimentary and plutonic formations may occur in the earth's crust.

The oldest plutonic rock, No. I., has been upheaved at successive periods until it has become exposed to view in a mountain-chain. This protrusion of No. I. has been caused by the igneous agency which produced the newer plutonic rocks Nos. II. III. and IV. Part of the primary fossiliferous strata, No. 1., have also been raised to the surface by the same gradual process. It will be observed that the Recent strata No. 4., and the Recent granite or plutonic rock No. IV., are the most remote from each other in position, although of contemporaneous date. According to this hypothesis, the convulsions of many periods will be required before Recent granite will be upraised so as to form the highest ridges and central axes of mountain-chains. During that time the Recent strata No. 4. might be covered by a great many newer sedimentary formations.