Fig. 501.
Diagram showing the relative position which the plutonic and sedimentary formations of different ages may occupy.
| I. | Primary plutonic. | 4. Recent strata. |
| II. | Secondary plutonic. | 3. Tertiary strata. |
| III. | Tertiary plutonic. | 2. Secondary strata. |
| IV. | Recent plutonic. | 1. Primary fossiliferous strata. |
The metamorphic rocks are not indicated in this diagram; but the student will infer, from what has been said in Chap. XXXII., that some portions of the stratified formations Nos. 1. and 2. invaded by granite will have become metamorphic.
Eocene granite and plutonic rocks.—In a former part of this volume ([p. 205.]), the great nummulitic formation of the Alps and Pyrenees was referred to the Eocene period, and it follows that those vast movements which have raised fossiliferous rocks from the level of the sea to the height of more than 10,000 feet above its level have taken place since the commencement of the tertiary epoch. Here, therefore, if anywhere, we might expect to find hypogene formations of Eocene date breaking out in the central axis or most disturbed region of the loftiest chain in Europe. Accordingly, in the Swiss Alps, even the flysch, or upper portion of the nummulitic series, has been occasionally invaded by plutonic rocks, and converted into crystalline schists of the hypogene class. There can be little doubt that even the talcose granite of Mont Blanc itself has been in a fused or pasty state since the flysch was deposited at the bottom of the sea; and the question as to its age is not so much whether it be a secondary or tertiary granite, as whether it should be assigned to the Eocene or Miocene epoch.
Great upheaving movements have been experienced in the region of the Andes, during the Post-Pliocene period. In some part, therefore, of this chain, we may expect to discover tertiary plutonic rocks laid open to view. What we already know of the structure of the Chilian Andes seems to realize this expectation. In a transverse section, examined by Mr. Darwin, between Valparaiso and Mendoza, the Cordillera was found to consist of two separate and parallel chains, formed of sedimentary rocks of different ages, the strata in both resting on plutonic rocks, by which they have been altered. In the western or oldest range, called the Peuquenes, are black calcareous clay-slates, rising to the height of nearly 14,000 feet above the sea, in which are shells of the genera Gryphæa, Turritella, Terebratula, and Ammonite. These rocks are supposed to be of the age of the central parts of the secondary series of Europe. They are penetrated and altered by dikes and mountain masses of a plutonic rock, which has the texture of ordinary granite, but rarely contains quartz, being a compound of albite and hornblende.
The second or eastern chain consists chiefly of sandstones and conglomerates, of vast thickness, the materials of which are derived from the ruins of the western chain. The pebbles of the conglomerates are, for the most part, rounded fragments of the fossiliferous slates before mentioned. The resemblance of the whole series to certain tertiary deposits on the shores of the Pacific, not only in mineral character, but in the imbedded lignite and silicified woods, leads to the conjecture that they also are tertiary. Yet these strata are not only associated with trap rocks and volcanic tuffs, but are also altered by a granite consisting of quartz, felspar, and talc. They are traversed, moreover, by dikes of the same granite, and by numerous veins of iron, copper, arsenic, silver, and gold; all of which can be traced to the underlying granite.[453-A] We have, therefore, strong ground to presume that the plutonic rock, here exposed on a large scale in the Chilian Andes, is of later date than certain tertiary formations.
But the theory adopted in this work of the subterranean origin of the hypogene formations would be untenable, if the supposed fact here alluded to, of the appearance of tertiary granite at the surface was not a rare exception to the general rule. A considerable lapse of time must intervene between the formation in the nether regions of plutonic and metamorphic rocks, and their emergence at the surface. For a long series of subterranean movements must occur before such rocks can be uplifted into the atmosphere or the ocean; and, before they can be rendered visible to man, some strata which previously covered them must usually have been stripped off by denudation.
We know that in the Bay of Baiæ, in 1538, in Cutch in 1819, and on several occasions in Peru and Chili, since the commencement of the present century, the permanent upheaval or subsidence of land has been accompanied by the simultaneous emission of lava at one or more points in the same volcanic region. From these and other examples it may be inferred that the rising or sinking of the earth's crust, operations by which sea is converted into land, and land into sea, are a part only of the consequences of subterranean igneous action. It can scarcely be doubted that this action consists, in a great degree, of the baking, and occasionally the liquefaction, of rocks, causing them to assume, in some cases a larger, in others a smaller volume than before the application of heat. It consists also in the generation of gases, and their expansion by heat, and the injection of liquid matter into rents formed in superincumbent rocks. The prodigious scale on which these subterranean causes have operated in Sicily since the deposition of the Newer Pliocene strata will be appreciated, when we remember that throughout half the surface of that island such strata are met with, raised to the height of from 50 to that of 2000 and even 3000 feet above the level of the sea. In the same island also the older rocks which are contiguous to these marine tertiary strata must have undergone, within the same period, a similar amount of upheaval.