Stratification, joints, and cleavage.
Joints, according to Professor Sedgwick, are distinguishable from lines of slaty cleavage in this, that the rock intervening between two joints has no tendency to cleave in a direction parallel to the planes of the joints, whereas a rock is capable of indefinite subdivision in the direction of its slaty cleavage. In some cases where the strata are curved, the planes of cleavage are still perfectly parallel. This has been observed in the slate rocks of part of Wales (see [fig. 511.]), which consist of a hard greenish slate. The true bedding is there indicated by a number of parallel stripes, some of a lighter and some of a darker colour than the general mass. Such stripes are found to be parallel to the true planes of stratification, wherever these are manifested by ripple-mark, or by beds containing peculiar organic remains. Some of the contorted strata are of a coarse mechanical structure, alternating with fine-grained crystalline chloritic slates, in which case the same slaty cleavage extends through the coarser and finer beds, though it is brought out in greater perfection in proportion as the materials of the rock are fine and homogeneous. It is only when these are very coarse that the cleavage planes entirely vanish. These planes are usually inclined at a very considerable angle to the planes of the strata. In the Welsh chains, for example, the average angle is as much as from 30° to 40°. Sometimes the cleavage planes dip towards the same point of the compass as those of stratification, but more frequently to opposite points. It may be stated as a general rule, that when beds of coarser materials alternate with those composed of finer particles, the slaty cleavage is either entirely confined to the fine-grained rock, or is very imperfectly exhibited in that of coarser texture. This rule holds, whether the cleavage is parallel to the planes of stratification or not.
Fig. 511.
Parallel planes of cleavage intersecting curved strata. (Sedgwick.)
In the Swiss and Savoy Alps, as Mr. Bakewell has remarked, enormous masses of limestone are cut through so regularly by nearly vertical partings, and these are often so much more conspicuous than the seams of stratification, that an inexperienced observer will almost inevitably confound them, and suppose the strata to be perpendicular in places where in fact they are almost horizontal.[470-A]
Now these joints are supposed to be analogous to those partings which have been already observed to separate volcanic and plutonic rocks into cuboidal and prismatic masses. On a small scale we see clay and starch when dry split into similar shapes, which is often caused by simple contraction, whether the shrinking be due to the evaporation of water, or to a change of temperature. It is well known that many sandstones and other rocks expand by the application of moderate degrees of heat, and then contract again on cooling; and there can be no doubt that large portions of the earth's crust have, in the course of past ages, been subjected again and again to very different degrees of heat and cold. These alternations of temperature have probably contributed largely to the production of joints in rocks.
In some countries, as in Saxony, where masses of basalt rest on sandstone, the aqueous rock has for the distance of several feet from the point of junction assumed a columnar structure similar to that of the trap. In like manner some hearthstones, after exposure to the heat of a furnace without being melted, have become prismatic. Certain crystals also acquire by the application of heat a new internal arrangement, so as to break in a new direction, their external form remaining unaltered.
Sir R. Murchison observes, that in referring both joints and slaty cleavage to crystalline action, we are borne out by a well-known analogy in which crystallization has in like manner given rise to two distinct kinds of structure in the same body. Thus, for example, in a six-sided prism of quartz, the planes of cleavage are distinct from those of the prism. It is impossible to cleave the crystals parallel to the plane of the prism, just as slaty rocks cannot be cleaved parallel to the joints; but the quartz crystal, like the older schists, may be cleaved ad infinitum in the direction of the cleavage planes.[471-A]