It seems, therefore, that the fissures called joints may have been the result of different causes, as of some modification of crystalline action, or simple contraction during consolidation, or during a change of temperature. And there are cases where joints may have been due to mechanical violence, and the strain exerted on strata during their upheaval, or when they have sunk down below their former level. Professor Phillips has suggested that the previous existence of divisional planes may often have determined, and must greatly have modified, the lines and points of fracture caused in rocks by those forces to which they owe their elevation or dislocations. These lines and points being those of least resistance, cannot fail to have influenced the direction in which the solid mass would give way on the application of external force.
Professor Phillips has also remarked that in some slaty rocks the form of the outline of fossil shells and trilobites has been much changed by distortion, which has taken place in a longitudinal, transverse, or oblique direction. This change, he adds, seems to be the result of a "creeping movement" of the particles of the rock along the planes of cleavage, its direction being always uniform over the same tract of country, and its amount in space being sometimes measurable, and being as much as a quarter or even half an inch. The hard shells are not affected, but only those which are thin.[471-B] Mr. D. Sharpe, following up the same line of inquiry, came to the conclusion, that the present distorted forms of the shells in certain British slate rocks may be accounted for by supposing that the rocks in which they are imbedded have undergone compression in a direction perpendicular to the planes of cleavage, and a corresponding expansion in the direction of the dip of the cleavage.[471-C]
Mr. Darwin infers from his observations, that in South America the strike of the cleavage planes is very uniform over wide regions, and that it corresponds with the strike of the planes of foliation in the gneiss and mica-schists of the same parts of Chili, Tierra del Fuego, &c. The explanation which he suggests, is based upon a combination of mechanical and crystalline forces. The planes, he says, of cleavage, and even the foliation of mica-schist and gneiss, may be intimately connected with the planes of different tension to which the area was long subjected, after the main fissures or axis of upheavement had been formed, but before the final consolidation of the mass and the total cessation of all molecular movement.[472-A]
I have already stated that some extremely fine slates are perfectly parallel to the planes of stratification, as those of the Niesen, for example, near the Lake of Thun, in Switzerland, which contain fucoids, and are no doubt due to successive aqueous deposition. Even where the slates are oblique to the general planes of the strata, it by no means follows as a matter of course that they have been caused by crystalline action, for they may be the result of that diagonal lamination which I have before described ([p. 17.]). In this case, however, there is usually much irregularity, whereas cleavage planes oblique to the true stratification, which are referred to a crystalline action, are often perfectly symmetrical, and observe a strict geometrical parallelism, even when the strata are contorted, as already described ([p. 470.]).
Professor Sedgwick, speaking of the planes of slaty cleavage, where they are decidedly distinct from those of sedimentary deposition, declares his opinion that no retreat of parts, no contraction in the dimensions of rocks in passing to a solid state, can account for the phenomenon. It must be referred to crystalline or polar forces acting simultaneously, and somewhat uniformly, in given directions, on large masses having a homogeneous composition.
Sir John Herschel, in allusion to slaty cleavage, has suggested, "that if rocks have been so heated as to allow a commencement of crystallization; that is to say, if they have been heated to a point at which the particles can begin to move amongst themselves, or at least on their own axes, some general law must then determine the position in which these particles will rest on cooling. Probably that position will have some relation to the direction in which the heat escapes. Now, when all, or a majority of particles of the same nature, have a general tendency to one position, that must of course determine a cleavage plane. Thus we see the infinitesimal crystals of fresh precipitated sulphate of barytes, and some other such bodies, arrange themselves alike in the fluid in which they float; so as, when stirred, all to glance with one light, and give the appearance of silky filaments. Some sorts of soap, in which insoluble margarates[472-B] exist, exhibit the same phenomenon when mixed with water; and what occurs in our experiments on a minute scale may occur in nature on a great one."[472-C]
[CHAPTER XXXVI].
METAMORPHIC ROCKS—continued.
Strata near some intrusive masses of granite converted into rocks identical with different members of the metamorphic series — Arguments hence derived as to the nature of plutonic action — Time may enable this action to pervade denser masses — From what kinds of sedimentary rock each variety of the metamorphic class may be derived — Certain objections to the metamorphic theory considered — Lamination of trachyte and obsidian due to motion — Whether some kinds of gneiss have become schistose by a similar action.