Seeds and plants from the Egyptian tombs.—The evidence derived from the Egyptian monuments was not confined to the animal kingdom; the fruits, seeds, and other portions of twenty different plants, were faithfully preserved in the same manner; and among these the common wheat was procured by Delille, from closed vessels in the sepulchres of the kings, the grain of which retained not only their form but even their color; so effectual has proved the process of embalming with bitumen in a dry and equable climate. No difference could be detected between this wheat and that which now grows in the East and elsewhere; and in regard to the barley, I am informed by Mr. Brown, the celebrated botanist, that its identity with the grain of our own times can be tested by the closest comparison. On examining, for example, one of the seeds from Mr. Sam's Egyptian collection in the British Museum, it is found that "the structure of the husks or that part of the flower which is persistent, agrees precisely with the barley of the present day, in having one perfect flower and the filiform rudiments of a second." Some naturalists believe that the perfect identification of the ancient Egyptian cerealia with the varieties now cultivated has been carried still further, by sowing the seeds taken out of the catacombs, and raising plants from them; but we want more evidence of this fact. Certain it is, that when the experiment was recently made in the botanic garden at Kew, with 100 seeds of wheat, barley, and lentils, from the Egyptian collection before mentioned of the British Museum, not one of them would germinate.[809]
Native country of the common wheat.—And here I may observe that there is an obvious answer to Lamarck's objection, that the botanist cannot point out a country where the common wheat grows wild, unless in places where it may have been derived from neighboring cultivation.[810] All naturalists are well aware that the geographical distribution of a great number of species is extremely limited; that it was to be expected that every useful plant should first be cultivated successfully in the country where it was indigenous; and that, probably, every station which it partially occupied, when growing wild, would be selected by the agriculturist as best suited to it when artificially increased. Palestine has been conjectured, by a late writer on the cerealia, to have been the original habitation of wheat and barley; a supposition which is rendered the more plausible by Hebrew and Egyptian traditions, and by tracing the migrations of the worship of Ceres, as indicative of the migrations of the plant.[811]
If we are to infer that some one of the wild grasses has been transformed into the common wheat, and that some animal of the genus Canis, still unreclaimed, has been metamorphosed into the dog, merely because we cannot find the domestic dog, or the cultivated wheat, in a state of nature, we may be next called upon to make similar admissions in regard to the camel; for it seems very doubtful whether any race of this species of quadruped is now wild.
Changes in plants produced by cultivation.—But if agriculture, it will be said, does not supply examples of extraordinary changes of form and organization, the horticulturist can, at least, appeal to facts which may confound the preceding train of reasoning. The crab has been transformed into the apple; the sloe into the plum; flowers have changed their color, and become double; and these new characters can be perpetuated by seed; a bitter plant, with wavy sea-green leaves, has been taken from the sea-side, where it grew like wild charlock; has been transplanted into the garden, lost its saltness, and has been metamorphosed into two distinct vegetables, as unlike each other as is each to the parent plant—the red cabbage and the cauliflower. These, and a multitude of analogous facts, are undoubtedly among the wonders of nature, and attest more strongly, perhaps, the extent to which species may be modified, than any examples derived from the animal kingdom. But in these cases we find that we soon reach certain limits, beyond which we are unable to cause the individuals descending from the same stock to vary; while, on the other hand, it is easy to show that these extraordinary varieties could seldom arise, and could never be perpetuated in a wild state for many generations, under any imaginable combination of accidents. They may be regarded as extreme cases, brought about by human interference, and not as phenomena which indicate a capability of indefinite modification in the natural world.
The propagation of a plant by buds or grafts, and by cuttings, is obviously a mode which nature does not employ; and this multiplication, as well as that produced by roots and layers, seems merely to operate as an extension of the life of an individual, and not as a reproduction of the species such as happens by seed. All plants increased by grafts or layers retain precisely the peculiar qualities of the individual to which they owe their origin, and, like an individual, they have only a determinate existence; in some cases longer, and in others shorter.[812] It seems now admitted by horticulturists, that none of our garden varieties of fruit are entitled to be considered strictly permanent, but that they wear out after a time;[813] and we are thus compelled to resort again to seeds; in which case there is so decided a tendency in the seedlings to revert to the original type, that our utmost skill is sometimes baffled in attempting to recover the desired variety.
Varieties of the cabbage.—The different races of cabbages afford, as was admitted, an astonishing example of deviation from a common type; but we can scarcely conceive them to have originated, much less to have lasted for several generations, without the intervention of man. It is only by strong manures that these varieties have been obtained, and in poorer soils they instantly degenerate. If, therefore, we suppose in a state of nature the seed of the wild Brassica oleracea to have been wafted from the sea-side to some spot enriched by the dung of animals, and to have there become a cauliflower, it would soon diffuse its seed to some comparatively sterile soils around, and the offspring would relapse to the likeness of the parent stock.
But if we go so far as to imagine the soil, in the spot first occupied, to be constantly manured by herds of wild animals, so as to continue as rich as that of a garden, still the variety could not be maintained; because we know that each of these races is prone to fecundate others, and gardeners are compelled to exert the utmost diligence to prevent cross-breeds. The intermixture of the pollen of varieties growing in the poorer soil around would soon destroy the peculiar characters of the race which occupied the highly manured tract; for, if these accidents so continually happen, in spite of our care, among the culinary varieties, it is easy to see how soon this cause might obliterate every marked singularity in a wild state.
Besides, it is well known that, although the pampered races which we rear in our gardens for use or ornament may often be perpetuated by seed, yet they rarely produce seed in such abundance, or so prolific in quality, as wild individuals; so that if the care of man were withdrawn, the most fertile variety would always, in the end, prevail over the more sterile.
Similar remarks may be applied to the double flowers, which present such strange anomalies to the botanist. The ovarium, in such cases, is frequently abortive; and the seeds, when prolific, are generally much fewer than where the flowers are single.
Changes caused by soil.—Some curious experiments, recently made on the production of blue instead of red flowers in the Hydrangea hortensis, illustrate the immediate effect of certain soils on the colors of the calyx and petals. In garden-mould or compost, the flowers are invariably red; in some kinds of bog-earth they are blue; and the same change is always produced by a particular sort of yellow loam.