[Transcriber’s Note: The original image is approximately 1 inch (3cm) high and 1¾ inches (4.5cm) wide.]

If we had any sufficient knowledge of the mental qualities which belong to different regions of the brain (if, indeed, such localisation of qualities is possible), we might draw some interesting conclusions from this difference between the two races. But unfortunately our knowledge on that matter is very defective. We are not in a position to say that length and breadth of the brain either can or cannot compensate (so to speak) for shallowness. It is probable that the mental qualities of the two forms of brain were in important respects different, but that is all that can at present be said. No accredited brain student would, until more is known, venture to draw conclusions as to mental quality from such facts as mere breadth, length, and depth of the cranial cavity.

The Corrèze skull has a strongly-projecting face, depending not merely on a protrusion of the dentary border of the upper jaw, but on a forward thrust of the entire face. This is not shown by the Gibraltar skull ([Fig. 77]). It is not improbable that this region has been flattened in the Gibraltar skull whilst it was buried in the cave deposit and softened by water. The lower jaw is preserved in the new French specimen, and is very remarkable on account of the retreating chin and the lowness and backward flexion of the articular process, as well as for the large size of the surface by which it articulates with the skull. All the cheek-teeth have been shed (see [Fig. 65]), and the sockets closed owing to inflammation, showing that primitive European man was subject to the same trouble with his teeth from which civilised men of to-day suffer. In comparing the skull with the skulls of modern races, Professor Boule is not inclined to insist much on the resemblance to Australian and Tasmanian skulls presented by the thick and large brow-ridges. A careful study of the skull is giving to Professor Boule many facts of importance which will be published ere long. The articular surfaces or “condyles” of the skull (for instance) by which it was set on the neck vertebræ are so set that the head must have been habitually carried with a droop like that of an animal, and not poised upright on the neck as in modern races of man.

Not less important than the skull are some of the bones of the arm and leg. Indeed, they show more novel characters than the skull, and definitely distinguish the Neander Men so as to justify us in regarding them as a distinct species, Homo Neanderthalensis. The thigh-bone is very short: as compared with that of a modern European, it is as 14 to 18. Also it is thick and curved. This was already known in the Neander Man of the Spy cave, and its confirmation by the specimen from the Corrèze establishes this shortness of the thigh as a specific character. There are also strange features in the articulation of the bones of the thumb and of the heel which Professor Boule will make known when he publishes his full account of this most astonishing skeleton.

It is worth noting here that another skull of the same race—that of a young individual—was dug out in 1908 at Moustier by Mr. Hauser, a Swiss explorer. The specimen was broken into many fragments and has not been satisfactorily put together, so that at present it is not possible to say whether it gives any further information as to the Neander Man. Also in 1909 the French explorers have found another skull and skeleton of the same age and race at Ferassi, near Moustier, on the Veyzere. It has been carefully removed, but not yet studied. The bones of the hand and of the foot are complete, and will be available for confirming the observations made on the skeleton of the Chapelle-aux-Saints.

We have, a few pages back, noted that behind the Glacial or Moustierian period of the Pleistocene (the second of our list, the Reindeer period being the latest), geologists recognise a third or warm period which is represented by deeper cave-deposits and by some of the older sands, clays, and gravels of our river valleys. As in the Moustierian deposits, so in these older deposits (called “Chellean” after a French township) we find abundant large flint implements (Figs. [73], [74]) indicating the presence of man. But the animals associated with him were not the mammoth and the hairy rhinoceros; they were the Elephas antiquus and a distinct kind of rhinoceros, and most distinctively the hippopotamus. These beds and their animal remains and worked flints occur abundantly in the South of England, and have been more or less mistaken for and confused with the glacial Moustierian deposits which also are common in England. No bones or skulls of the men of this Chellean period have been found, excepting a lower jaw, which was not long ago discovered in a deposit of this warmer and earlier age, near Heidelberg ([Fig. 82]). This jaw-bone is remarkably well preserved, and the great difference between it and that of a modern European may be seen by comparing our Figures [79] and [82]. In the absence of chin, the great breadth of the up-turned part of the jaw and the shallowness of the notch separating the condyle or articulating knob from the more forwardly placed “coronoid” process (a well-marked triangular process in the modern European jaw), the Heidelberg jaw differs from the modern European, and resembles that of the chimpanzee ([Fig. 81]).

Dr. Schoettensack of Heidelberg, who has described this remarkable jaw-bone and has very kindly presented casts of it to the Natural History Museum, to Oxford, to Cambridge, and to myself, was of the opinion that it indicated a distinct race or even a distinct species of man. But Professor Marcelin Boule has found that when the lower jaw of the skull from the Chapelle-aux-Saints is “reconstructed,” not only by replacing the parts broken away, but by restoring the teeth and the absorbed sockets of the teeth, it comes out very closely identical with the Heidelberg jaw. In [Fig. 80] I have reproduced the profile of Professor Boule’s complete restoration of the “Chapelle” skull, and it will be seen that the lower jaw differs very little from that of the Heidelberg specimen. Indeed, Professor Boule has published a photograph in which he attaches the Heidelberg lower jaw to the restored Chapelle skull in place of its own, and the similarity of the two becomes very obvious.

As will be seen by the drawings which I give here, the Heidelberg jaw is even more powerful than that of the Chapelle skull. The lower jaw of a modern European ([Fig. 79]), drawn to the same scale as the other two, and as that of the chimpanzee ([Fig. 81]), is an elegant little thing with its forwardly-projecting chin, its short measurement from front to back, and the narrowness and delicacy of its up-turned part or ramus, with its well-marked angle at the lower corner and deeply cut upper border between the condyle (hindermost projection with knob) and the coronoid.

The imperfect lower jaw (without teeth and with the articular condyle broken away) of the Cromagnon skull, drawn in [Fig. 75], should also be compared: it is, though broken, similar to that of the modern European. Lower jaws differ in some of the points which we have been looking at, from one another, but there is no known living race of men the lower jaw of which is not far nearer to that of the modern European ([Fig. 79]), than to that from the Chapelle-aux-Saints or from Heidelberg ([Fig. 82]); and I may add that the imperfect lower jaw of the Neander-man skull, from the Spy Cave in Belgium, agrees in the absence of chin and in other points with that of Heidelberg and of the Chapelle skull. There is not sufficient ground afforded by the characters of the lower jaw for considering that the race indicated by the Heidelberg specimen was distinct from the Neander race, as may be seen by comparing [Fig. 80] with [Fig. 82].