The hypothesis of pangenesis attempts to explain and connect together all the facts and conclusions which have been summarised in the preceding pages. This hypothesis assumes that each one of the countless cells of which the body of a higher animal is composed throws off a minute gemmule which, with those derived from other cells, exists in the body, and when supplied with nutriment multiplies by division. Each gemmule is capable of ultimate development into a cell similar to the one from which it, either directly or indirectly, arose. Each cell of the body dispatches its representative, as it were, to each single germ-cell, and this explains how it is that the latter possess the power of reproducing the likeness of the parent body. But the germ-cells also receive dormant gemmules which may remain undeveloped until some generation in the remote future. The development of the gemmules into cells depends on their union with the developing cells which precede them in the order of growth. Gemmules are thrown off during each stage of growth and during maturity.

This hypothesis of pangenesis is so called because the whole body is supposed to produce the elements from which new individuals arise, the germ-cells being only the union of these elements into clusters.

The fact that hybrids may be produced by grafting, that the pollen can act on the tissues of the female plant, and the male germ-cells on the future offspring of the female, implies that the reproductive material can exist and the reproductive processes take place in the tissues, and that they are not confined to the germ-cells.

The retention of dormant gemmules, and their passage from generation to generation until their development, may seem improbable; but is it more so than the fact which their presence would explain—viz. the transmission of latent structures and their ultimate reappearance?

The development of the whole plant from a Begonia leaf implies that these gemmules are very widely distributed through the tissues.

The elective affinity of the gemmules for the cells which precede them in growth may be paralleled by the affinity of the male and female germ-cells, as we see in the preference of a plant for the pollen grains of its own over those of closely-allied species, or by the attraction of the minute germs of disease to certain tissues of the body.

It is possible that the numerous gemmules thrown off by the cells of a complex structure, such as a feather, “may be aggregated into a compound gemmule.” In the case of a petal, however, where parts as well as the whole are apt to develop, as is seen in the case of “stripes of the calyx assuming the colour and texture of the corolla,” it is more probable that the gemmules are separate and free. The cell itself is a complex structure, and we do not know whether its separate parts are not developed from the separate gemmules of an aggregate.

Such an hypothesis explains the fundamental similarity which has already been shown to exist between all modes of reproduction. The gemmules collected in bud or germ-cell are essentially similar; and were it not for the special advantages of sexual reproduction (increased vigour and more marked variation of offspring), we can well believe that it would have been much less general. The formation of graft-hybrids, and the action of the male element on the mother and on future offspring, become intelligible. The antagonism between growth and sexual reproduction in animals, and between increase by buds, etc., and seeds in plants, can be understood by the use of gemmules in one direction preventing their simultaneous use in another.

The regrowth of an amputated part, as in the salamander or snail, is explained by the presence and development of gemmules previously thrown off from the part. The difficulty that a limb is produced of the same age as that which was lost, and not a larval limb, and that the cells with which the gemmules must unite at first are not those which precede them in the course of growth, but mature cells, is met by the consideration that this power is a special one adapted to meet special dangers to certain parts of certain animals, and that it is therefore probable that appropriate provision has been made by natural selection: it may be in the form of “a stock of nascent cells or of partially developed gemmules.” The existence of these latter in buds, and their absence from sexual cells, may account for bud development being the more direct and brief of the two. The much greater tendency to repair lost parts in lower and younger forms may be due to the same cause.

The occasional tendency of hybrids to resemble one parent in one part and the other in another may be due to superabundance of gemmules in the fertilised germ, those from one parent having “some advantage in number, affinity, or vigour over those derived from the other parent.” The general preponderance of one parent over the other may be similarly explained. The cases in which “the colour or other characters of either parent tend to appear in stripes or blotches” are to be understood by the gemmules having an affinity for others of the same kind.