The sterility of hybrids is entirely due to the reproductive organs being affected; in the case of plants they continue to propagate freely by buds. The hybrid cells throw off hybrid gemmules which collect in the buds but cannot do so in the reproductive organs.
Development and metamorphosis.—The remarkable facts of development and metamorphosis are well explained by the hypothesis. Allied forms may pass to a similar end through very dissimilar stages or conversely. Parts may appear to develop within previously existing corresponding parts, or they may appear within parts which are quite distinct. These divergent facts are explained by the hypothesis, each part during each stage being formed independently from the gemmules of the same part in previous generations, and not, although it may appear to do so, from the corresponding parts of earlier stages. In the process of time certain parts during certain stages may be affected by use or disuse or surroundings, and the parts of subsequent generations will be similarly affected, because formed from correspondingly altered gemmules; but this need not affect the other stages of the same parts.
Transposition and multiplication of parts.—The cases of abnormal transposition or multiplication of organs—for instance, the development of teeth in the palate or of pollen in the edge of a petal—are to be explained by supposing that the gemmules unite with wrong cells instead of, or as well as, the right ones; “and this would follow from a slight change in their elective affinities.” Such slight changes are known to occur; for instance, certain plants “absolutely refuse to be fertilised by their own pollen, though abundantly fertile with that of any other individual of the same species.” Inasmuch as the cells of adjoining parts will often have nearly the same structure, we can understand that some slight change in elective affinity may affect a large area. Hence we can account for a crowd of horns on the head of a sheep, or many spurs on the leg of a fowl, etc. Frequently repeated parts are extremely liable to vary in number; in this case we have a large number of closely allied gemmules and of points for their union, and slight changes in elective affinity would be specially apt to occur.
Variability.—Changed conditions may lead to irregularity in the number of gemmules derived from various parts of the body; deficiency in number might cause variation in any part by leaving some of the cells free to unite with allied gemmules.
The direct action of surroundings, or the effect of use or disuse on a part, may cause corresponding modifications of the gemmules, and through these of the part in the succeeding generation. “A more perplexing problem can hardly be proposed,” and yet it receives an explanation on this hypothesis. Such causes must, as a rule, act during many generations before the modification reappears in the offspring. This may be due to the unaltered gemmules derived from earlier generations, and their gradual replacement by the increasing number of altered gemmules.
Variation in plants is much more frequent in sexually produced than it is in asexually produced individuals. This may be due to the absence in the latter of that great cause of variability, changes in the reproductive organs under altered conditions. Furthermore, the former alone pass through the earlier phases of development, when structure is most plastic and yields most readily to the causes inducing variability.
The stability of hybrids and of many varieties when propagated by buds, as compared with their reversion to the parent form when propagated by seed, remains inexplicable.
Hence variability is explained as due (1) to the irregularity in number of gemmules, to their transpositions, and redevelopment when dormant; and (2) to their actual modification and the gradual replacement by them of unaltered gemmules.
Inheritance.—The non-transmission by heredity of mutilations, even when repeated for many generations, as in docking the tails of certain domesticated breeds, may be explained by the persistence of gemmules from still earlier generations. The cases of inheritance when mutilations are followed by disease, as in Brown-Séquard’s experiments on guinea-pigs, may be due to the gemmules being attracted to the diseased part and there destroyed.
The disappearance of a rudimentary part, together with its occasional reappearance by reversion, is to be understood by the existence of ancestral gemmules, for which the corresponding cells have, except in the cases of reversion, lost their affinity. When the disappearance is final and complete, the gemmules have probably perished altogether.