Whilst there can be no doubt as to the advantage of a wider dissemination of the ascertained facts concerning bacteria, it should be borne in mind that only patient, skilled observation and experimental research in well-equipped laboratories can advance this branch of science, or indeed train bacteriologists. The lives of Darwin and of Pasteur adequately illustrate this truth. Yet it is observable that States and public bodies are slow to act upon it, and frequently in the past the most useful and substantial support for the advancement of science has been forthcoming only from private sources. As the world learns its intimate relation to science and the interdependence between its life and scientific truth, it may be expected more heartily to support science.


BACTERIA


CHAPTER I

THE BIOLOGY OF BACTERIA[3]

The first scientist who demonstrated the existence of micro-organisms was Antony von Leeuwenhoek. He was born at Delft, in Holland, in 1632, and enthusiastically pursued microscopy with primitive instruments. He corroborated Harvey's discovery of the circulation of the blood in the web of a frog's foot; he defined the red blood corpuscles of vertebrates, the fibres of the lens of the human eye, the scales of the skin, and the structure of hair. He was neither educated nor trained in science, but in the leisure time of his occupation as a linen-draper he learned the art of grinding lenses, in which he became so proficient that he was able to construct a microscope of greater power than had been previously manufactured. The compound microscope dates from 1590, and when Leeuwenhoek was about forty years old, Holland had already given to the world both microscope and telescope. Robert Hooke did for England what Hans Janssen had done for Holland, and established the same conclusion that Leeuwenhoek arrived at independently, viz., that a simple globule of glass mounted between two metal plates and pierced with a minute aperture to allow rays of light to pass was a contrivance which would magnify more highly than the recognised microscopes of that day. It was with some such instrument as this that the first micro-organisms were observed in a drop of water. It was not until more than a hundred years later that these "animalcules," as they were termed, were thought to be anything more than accidental to any fluid or substance containing them. Plenciz, of Vienna, was one of the first to conceive the idea that decomposition could only take place in the presence of some of these "animalcules." This was in the middle of the eighteenth century. Just about a century later, by a series of important discoveries, it was established beyond dispute that these micro-organisms had an intimate causal relation to fermentation, putrefaction, and infectious diseases. Spallanzani, Pasteur, and Tyndall are the three who more than others contributed to this discovery. Spallanzani was an Italian, who studied at Bologna, and was in 1754 appointed to the chair of logic at Reggio. But his inclinations led him into the realm of natural history. Amongst other things, his attention was directed to the doctrine of spontaneous generation, which had been propounded by Needham a few years previously. In 1768 Spallanzani became Professor of Natural History at Pavia, and whilst there he demonstrated that if infusions of vegetable matter were placed in flasks and hermetically sealed, and then brought to the boiling point, no living organisms could thereafter be detected, nor did the vegetable matter decompose. When, however, the flasks were very slightly cracked, and air gained admittance, then invariably both organisms and decomposition appeared. Schwann, the founder of the cell-theory, and Schulze, both showed that if the air gaining access to the flask were either passed through highly heated tubes or drawn through strong acid the result was the same as if no air entered at all, viz., no organisms and no decomposition. The result of these investigations was that scientific men began to believe that no form of life arose de novo (abiogenesis), but had its source in previous life (biogenesis). It remained to Pasteur and Tyndall to demonstrate this beyond dispute, and to put to rout the fresh arguments for spontaneous generation which Pouchet had advanced as late as 1859. Pasteur collected the floating dust of the air, and found by means of the microscope many organised particles, which he sowed on suitable infusions, and thus obtained rich crops of "animalculæ." He also demonstrated that these organisms existed in different degrees in different atmospheres, few in the pure air of the Mer de Glace, more in the air of the plains, most in the air of towns. He further proved that it was not necessary to insist upon hermetic sealing or cotton filters to keep these living organisms in the air from gaining access to a flask of infusion. If the neck of the flask were drawn out into a long tube and turned downwards, and then a little upwards, even though the end be left open, no contamination gained access. Hence, if the infusion were boiled, no putrefaction would occur. The organisms which fell into the open end of the tube were arrested in the condensation water in the angle of the tube; but even if that were not so, the force of gravity acting upon them prevented them from passing up the long arm of the tube into the neck of the flask. A few years after Pasteur's first work on this subject Tyndall conceived a precise method of determining the absence or presence of dust particles in the air by passing a beam of sunlight through a glass box before and after its walls had been coated with glycerine. Into the floor of the box were fixed the mouths of flasks of infusion. These were boiled, after which they were allowed to cool, and might then be kept for weeks or months without putrefying or revealing the presence of germ life. Here all the conditions of the infusions were natural, except that in the air above them there was no dust.

The sum-total of result arising from all these investigations was to the effect that no spontaneous generation was possible, that the atmosphere contained unseen germs of life, that the smallest of organisms responded to the law of gravitation and adhered to moist surfaces, and that micro-organisms were in some way or other the cause of putrefaction.