The final refutation of the hypothesis of spontaneous generation was followed by an awakened interest in the unseen world of micro-organic life. Investigations into fermentation and putrefaction followed each other rapidly, and in 1863 Davaine claimed that Pollender's bacillus of anthrax, which was found in the blood and body tissues of animals dead of anthrax, was the cause of that disease. From that time to this in every department of biology bacteria have been increasingly found to play an important part. They cause changes in milk, and flavour butter; they decompose animal matter, yet build up the broken-down elements into compounds suitable for use in nature's economy; they assist in the fixation of free nitrogen; they purify sewage; in certain well-established cases they are the cause of specific disease, and in many other cases they are the likely cause. No doubt the disposal of spontaneous generation did much to arouse interest in this branch of science. Yet it must not be forgotten that the advance of the microscope and bacteriological method and technique have played a large share in this development. The sterilisation of culture fluids by heat, the use of aniline dyes as staining agents, the introduction of solid culture media (like gelatine and agar), and Koch's "plate" method have all contributed not a little to the enormous strides of bacteriology. Owing to its relation to disease, physicians have entered keenly into the arena of bacteriological research. Hence, from a variety of causes, it has come about that the advance has been phenomenal.

We shall now take up a number of points in the biology of bacteria which call for early attention, and which are mostly the outcome of comparatively recent work on the subject.

The Place of Bacteria in Nature. As we have seen, for a considerable period of time after their first detection these unicellular organisms were considered to be members of the animal kingdom. As late as 1838, when Ehrenberg and Dujardin drew up their classification, bacteria were placed among the Infusorians. This was in part due to the powers of motion which these observers detected in bacteria. It is now, of course, recognised that animals have no monopoly of motion. But what, after all, are the differences between animals and vegetables so low down in the scale of life? Chiefly two: there is a difference in life-history (in structure and development), and there is a difference in diet. A plant secures its nourishment from much simpler elements than is the case with animals; for example, it obtains its carbon from the carbonic acid gas in air and water. This it is able to do, as regards the carbon, by means of the green colouring matter known as chlorophyll, by the aid of which, with sunlight, carbonic acid is decomposed in the chlorophyll corpuscles, the oxygen passing back into the atmosphere, the carbon being stored in the plant in the form of starch or other organic compound. The supply of carbon in the chlorophyll-free plants, among which are the bacteria, is obtained by breaking up different forms of carbohydrates. Besides albumen and peptone, they use sugar and similar carbohydrates and glycerine as a source of carbon. Many of them also have the capacity of using organic matters of complex constitution by converting such into water, carbonic acid gas, and ammonia. Their hydrogen comes from water, their nitrogen from the soil, chiefly in the form of nitrates. From the soil, too, they obtain other necessary salts. Now all these substances are in an elementary condition, and as such plants can absorb them. Animals, on the other hand, are only able to utilise compound food products which have been, so to speak, prepared for them; for example, albuminoids and proteids. They cannot directly feed upon the elementary substances forming the diet of vegetables. This distinction, however, did not at once clear up the difficult matter of the classification of bacteria. It is true, they possess motion, are free from chlorophyll, and even feed occasionally upon products of decomposition—three physiological characters which would ally them to the animal kingdom. Yet by their structure and capsule of cellulose and by their life-history and mode of growth they unmistakably proclaim themselves to be of the vegetable kingdom. In 1853 Cohn arrived at a conclusion to this effect, and since that date they have become more and more limited in classification and restricted in definition.

Even yet, however, we are far from a scientific classification for bacteria. Nor is this matter for surprise. The development in this branch of biology has been so rapid that it has been impossible to assimilate the facts collected. The facts themselves by their remarkable variety have not aided classification. Names which a few years ago were applied to individual species, like Bacillus subtilis, or Bacterium termo, or Bacillus coli, are now representative, not of individuals, but of families and groups of species. Again, isolated characteristics of certain microbes, such as motility, power of liquefying gelatine, size, colour, and so forth, which at first sight might appear as likely to form a basis for classification, are found to vary not only between similar germs, but in the same germ. Different physical conditions have so powerful an influence upon these microscopic cells that their individual characters are constantly undergoing change. For example, bacteria in old cultures assume a different size, and often a different shape, from younger members of precisely the same species; Bacillus pyocyaneus produces a green to olive colour on gelatine, but a brown colour on potato; the bacillus of Tetanus is virulently pathogenic, and yet may not act thus unless in company with certain other micro-organisms. Hence it will at once appear to the student of bacteriology that, though there is great need for classification amongst the six or seven hundred species of microbes, our present knowledge of their life-history is not yet advanced enough to form more than a provisional arrangement.

We know that bacteria are allied to moulds on the one hand and yeasts on the other, and that they have no differentiation into root, stem, or leaf; we know that they are fungi (having no chlorophyll), in which no sexual reproduction occurs, and that their mode of multiplication is by division. From such facts as these we may build up a classification as follows:—

Vegetable Kingdom.
┌─────────────────┬─────────────┬───────────┐
Thallophyta.
[= The lowest forms
of vegetable life.No
differentiation into
root, stem, or leaf.]

Protophyta.
[= No sexual reproduction.]
Muscineæ Pteridophyta. Phanerogamia.
┌──────────┐
Algæ.
[= Chlorophyll present.]
Fungi.
[= No chlorophyll.]
┌─┬─┬─┬─┬─┬─┬─┬─┬─┐

Schizomycetes
[= multiplication by cell
division or by spores]
or Bacteria
(1) Coccaceæ[4]—round cells.
(2) Bacteriaceæ—rods and threads.
(3) Leptotricheæ.
(4) Cladotricheæ.
Higher Bacteria

Structure and Form. Having now located micro-organisms in the economy of nature, we may proceed to describe their subdivisions and form. For practical convenience rather than academic accuracy, we may accept the simple division of the family of bacteria into three chief forms, viz.:—

Lower Bacteria(1) Round cell form—coccus.
(2) Rod form—bacillus.
(3) Thread form—spirillum.