A very familiar and simple piece of electric apparatus is that known as a Leyden jar ([see Fig. 65]). A Leyden jar consists of a glass vessel, the outside and inside surfaces of which are respectively covered with tinfoil. If we apply to these two surfaces an electromotive force, we produce what is called an electric charge in the jar, which in reality consists in a state of electric strain in the walls of the vessel. When the jar is charged, if we connect together, by means of a thick wire, the outside and the inside tinfoil surfaces, we have a bright spark produced at the moment of making contact, and we have a rapidly alternating electric current produced in the connecting wire. If this connecting wire has a low resistance—in other words, is a very good conductor—then this electric spark consists, not in a discharge of electricity uniformly in one direction, but of a series of rapidly succeeding sparks which are really discharges of electricity or electric currents passing through the air alternately in opposite directions. This can be demonstrated by taking a photograph of the electric spark on a rapidly revolving photographic plate or strip. You are probably all familiar with the sensitive photographic film which is employed in hand cameras, such as the kodak. If a strip of this sensitive film is bound round the edge of a wheel, and if the wheel is set in very rapid rotation, and if we throw on the film, by means of a lens, an image of an oscillatory electric spark, it will be clear to you that, if the spark is continuous, it will produce upon the moving photographic film an image which will be of the nature of a broad band. If, however, the electric spark is intermittent, then this photographic image will be cut up into a series of bars or patches, each one of which will correspond to a separate image of one constituent of the oscillatory spark.

Photographs of oscillatory electric sparks have in this way been taken by many observers, and have afforded a demonstration that the electric discharge of a Leyden jar, when taken through a wire of low resistance, is not a continuous movement of electricity in one direction, but a rapidly alternating electric current through the wire, forming the oscillatory spark, and corresponding with an equally rapid alternating electric strain in the glass, both strain and current dying gradually away.

Although this operation takes a long time to describe, yet, nevertheless, an oscillatory spark consisting of 20 or 30 electric oscillations may all be over in the ¹⁄₁₀₀₀₀ or even ¹⁄₁₀₀₀₀₀ second. In the photograph now thrown upon the screen ([see Fig. 66]) you see the image of an oscillatory electric spark, each oscillation of which lasted ¹⁄₇₀₀₀ second. We can, however, give a still further proof that the discharge of a Leyden jar or electric condenser is, under some circumstances, oscillatory, in the following manner:⁠—

Fig. 66.—A photograph of an oscillatory electric spark (Hemsalech).

You have already seen that an alternating or two-way electric current existing in one circuit can produce another alternating or two-way electric current in a neighbouring circuit. Before me, on the table, is an arrangement by which a battery of six Leyden jars, L, is continually being charged and discharged through a thick wire which is wound a dozen times round a square wooden frame, P ([see Fig. 67]). In proximity to this wooden frame there is another wooden frame, S, also having on it a dozen or two turns of insulated wire; the circuit of this last conductor is completed by a small incandescent lamp, G. You will notice that when the Leyden jars are charged and discharged rapidly through the primary conductor, the little glow-lamp of the secondary circuit lights up brilliantly, and, in virtue of what has already been explained, you will see that this experiment is a proof that the discharge of the Leyden jars through the primary circuit must consist in an alternating or two-way current; in other words, it must be oscillatory.

Fig. 67.

A still further proof may be given that the discharge of a Leyden jar or condenser, when taking place through a low-resistance circuit, is oscillatory in the following manner:⁠—

We employ the vacuum tube that we brought to your notice a few moments ago. When an electric current is sent always in the same direction through such a tube, it is well known that the two ends of the tube are not alike in appearance. The tube, as you have seen, is filled with a luminous glow; but this glow is interrupted, forming what is called a dark space near one terminal of the tube, this terminal being that which is termed the negative pole. Accordingly, this unsymmetrical appearance in the light in the tube is a proof that the electric current is passing through it always in one direction. We can, however, vary the experiment, and instead of illuminating the tube by means of a direct-discharge or induction coil, which is always in one direction, we are able to illuminate it by means of a rapid series of discharges from a Leyden jar. You will then see that the glow-light in the tube is symmetrical—the tube, in other words, is alike at both ends; and this shows us that the discharge from the tube under these circumstances must be alternating—that is, first in one direction and then in the other.