Whilst this apparatus is in use, we can show you with it two other very pretty experiments dependent upon the fact that the discharge of a Leyden jar through a low-resistance circuit is alternating or oscillatory. A moment ago we employed this oscillatory discharge in one circuit to induce a secondary oscillatory discharge in another metallic circuit, and this secondary oscillatory or alternating current was made manifest by its power to illuminate a little incandescent lamp. If, however, we place a large glass bulb, P, which has been partly exhausted of its air, in the interior of the primary discharge coil, you will see that this primary oscillatory discharge of the Leyden jar is able to create in the glass bulb a brilliant luminous ring of light ([see Fig. 68]). This is called an electrodeless discharge, and it is due to the fact that the rapidly oscillatory current existing in the wire wrapped round the bulb creates a similar oscillatory discharge in the rarefied air in the interior of the bulb, this being a conductor, and thus renders it luminous along a certain line.

The production of these electrodeless discharges in rarefied gases has been particularly studied by Professor J. J. Thomson.

Another experiment illustrating what is called the inductive transformation of electrical oscillations is in the arrangement commonly called a Tesla coil. Such a coil is now before you. It consists of a long coil of insulated wire which is placed in the interior of a tall glass vessel, and on the outside of this glass vessel is wound another insulated and much longer wire. If the alternating or oscillatory discharge of a Leyden jar is allowed to take place through the thicker wire in the interior of the glass cylinder, it generates in the outer or secondary wire a very powerful alternating or oscillatory electromotive force, and we see that this is the case by connecting the ends of this secondary circuit to two insulated brass balls, between which a torrent of sparks now passes. We may vary the experiment by connecting the ends of the secondary circuit of the Tesla coil to two insulated concentric rings of thin, bare, brass wire, and then, when the room is darkened, we see the space between these rings filled with a brilliant purple light, which is due to the discharge taking place through the air under the action of the rapidly oscillatory electromotive force generated in the secondary circuit.

Fig. 68.—An electrodeless discharge in an exhausted bulb.

I trust that these experiments will have produced a conviction in your minds that the release of the electric strain in the glass dielectric of a Leyden jar results in the production of electric oscillations or rapidly alternating electric currents in the metallic circuit connecting the two surfaces, just as the sudden release of a compressed spring results in a series of mechanical oscillations.

We may here remark that any arrangement of two metallic plates with a sheet of insulator or non-conductor between them is called a condenser. Thus, a condenser can be built up by coating a sheeting of glass on its two sides with tinfoil, or in place of glass we may use mica, paraffin paper, or any other good non-conductor. We may even use air at ordinary pressures; and thus, if two metal plates are placed near to one another in air, the plates being both insulated—that is, supported on non-conductors,—this arrangement constitutes what is called an air condenser. An air condenser, therefore, is virtually only a kind of Leyden jar in which the glass is replaced by air, and the tinfoil by two stout metal plates.

Fig. 69.—Hertz oscillator.

I must now proceed to describe and show you a particular kind of air condenser which was invented by the late Professor Hertz, and, in consequence, is called a Hertz oscillator ([see Fig. 69]). It consists of two square or round metal plates which are carried on glass or ebonite legs, and these plates have short, stout wires attached to them, ending in brass knobs. If these plates are placed in line with one another, they constitute an air condenser of a very peculiar kind, the two brass plates correspond with the tinfoil surfaces of a Leyden jar, and the air all round them corresponds with the glass of the jar. Supposing the plates are so arranged that the brass knobs are about ¹⁄₄ inch apart, or rather less, if then we connect these two brass plates to the secondary terminals of an induction coil or electrical machine capable of giving long sparks in air, we shall find, when the electrical machine or induction coil is set in action, that a very bright crackling spark passes between these little knobs, and with proper experience it is easy to adjust the distance from the knobs so that this spark is an oscillatory spark. Under these circumstances, what is taking place is as follows: In the first place, an electromotive force is acting between the two plates, and creating an electric strain in the air all round them along certain lines, and also between the two knobs. The air, and all other gases like it, possess this peculiar property, that whilst at ordinary pressures they are nearly perfect non-conductors, yet, nevertheless, if they are subjected to more than a certain electric pressure, they pass instantly into a condition in which they become very good conductors. Accordingly, if we progressively increase the electromotive force acting between the plates, up to a certain point the whole arrangement acts like a Leyden jar; but there comes a moment when the air between the knobs breaks down and passes from a non-conductive to a conductive condition. The two plates then resemble at that moment the surfaces of a charged Leyden jar which are connected together by a good conductor, and, as we have already seen, under those circumstances the discharge is oscillatory, and the electric strain in the non-conductor, or dielectric, viz. the air around the plates, dies away by a series of rapidly alternating electric strains in opposite directions.