Fig. 72.—Electric-radiation detector (Fleming).

To sum up, we may then say that whenever rapid electrical oscillations are created in open circuit, such as the two rods above described, the arrangement constitutes a device for creating an impulse or effect in the surrounding space called an electric wave in the æther or electro-magnetic medium; just as an organ-pipe or piano-string or other musical instrument constitutes a device for creating waves in the air by means of mechanical oscillations. The existence of these electric waves, and their transference to distant places, can be rendered evident by their action as already described upon finely powdered metals. An apparatus which shows this effect very well is now arranged before you. At one end of the table I have a pair of rods connected to an induction coil, constituting a Hertz radiator, the action of which has just been described. At the other end of the table are two similar long rods, but their inner ends are connected to two small plates of silver, which form the sides of a very narrow box, and between these plates is placed a very small quantity of metallic powder. The construction of this little box is as follows: A thin slip of ivory has a little gap cut out of it ([see Fig. 72]), and on the two sides of this slip of ivory are bound two silver plates bent in the shape of the letter L, forming, therefore, a very narrow box with silver sides. The two silver plates are connected to the two long rods. As already explained, the metallic filings or finely powdered metal are not in their ordinary condition an electric conductor. Accordingly, if we connect to one of the silver plates one terminal of a battery joined in series with an electric bell, the other end of the bell being connected to the second silver plate, this battery cannot send a current through the bell, because the circuit is interrupted by the non-conductive metallic powder in the little box. Supposing, then, that we cause a spark to pass between the balls of the radiator, and start an electric wave. When this electric wave reaches the long rods connected to the receiving arrangement, it sets up in these rods a sudden electromotive force, and this electromotive force, as already explained, if of sufficient magnitude, causes the loose mass of metallic filings to pass from a non-conductive to a conductive condition. At that moment, therefore, the battery is able to send an electric current through the bell, and to cause it to ring. We can, however, stop the ringing by giving the little box containing the metallic filings a tap, which separates them from one another and interrupts the electric conductivity. The function of the two rods connected with the receiver is not quite the same as the function of the two rods connected to the radiator. In order to create a vigorous electric wave, we must have a radiator which possesses what is called considerable electric capacity, and also considerable inductance, and we can only do this in general by using long rods. On the other hand, at the receiving end the efficacy of the rods is due to the fact that they, so to speak, add together the electric strain taking place over a considerable distance; in other words, the electromotive force which is set up in the receiving circuit is dependent on the length of the rods. The longer, therefore, these rods, the greater is the distance at which we can obtain the effect which is shown to you with a given spark-length.

One point it is important to notice, and that is, that the rods of the receiver must be parallel to the rods of the radiator if we are to obtain any effect at a distance. If we turn the rods of the radiator round so that they are at right angles to those of the receiver, you see that no sparks produced at the radiator balls cause the bell in connection with the receiver to ring. The reason for this is because the electric strain, which is propagated out into the space, exists in a direction parallel to the radiator rods all along a line drawn perpendicular to the rods through the spark-gap. The receiver rods will not have electromotive force produced in them by this travelling line of electric strain unless they are parallel to its direction.

It is to be hoped that the above explanations have afforded indications of what is meant by an electric wave. On the other hand, there may be many who find it exceedingly difficult to derive clear ideas when the subject is presented to them clothed in such general terms as we have been obliged to use.

It may assist matters, therefore, if, before concluding this chapter, a word or two is said on the subject of recent investigation into the inner mechanism of an electric current and an electric strain. It is impossible to do this, however, without making mention, in the briefest possible way, of modern researches into the constitution of matter. If you can imagine yourselves furnished with a little crystal of ordinary table salt, chemically called chloride of sodium, and the means of cutting it up under an immensely powerful microscope, you might go on dividing it up into smaller and smaller pieces. If this process could be continued sufficiently far, we should ultimately obtain a very small fragment of salt, which, if still further divided, would yield two portions of matter not alike and not salt. This smallest possible portion of salt is called a molecule of sodium chloride. Chemical facts teach us that this molecule is made up of two still smaller portions of matter, which are called respectively atoms of chlorine and sodium.

We have good reason to believe that all solids, liquids, and gases are composed of molecules, and these are built up of atoms, few or many.

In the case of some substances, such as salt, the molecule is very simple and composed of two atoms. In other substances, such as albumen or white of egg, the molecules are very complicated and composed of hundreds of atoms. The word atom means something which “cannot be cut,” and until comparatively recent time the opinion was held that atoms of matter were the smallest indivisible portions of matter which could exist.

More than twenty-five years ago, Sir William Crookes showed, by numerous beautiful experiments, that in a vacuum tube, such as you have seen used to-day, a torrent of small particles is projected from the negative terminal when an electric current is passed through the tube. This stream of particles is called the cathode stream, or the cathode radiator. Within recent times, Sir Joseph Thomson has furnished a proof that this cathode stream consists of particles very much smaller than chemical atoms, each particle being charged with negative electricity. These particles are now called corpuscles, or electrons.

It has been shown that these electrons are constituents of chemical atoms, and when we remove an electron from an atom we leave the remainder positively electrified. An atom can, therefore, by various means be divided into two portions of unequal size. First, a very small part which is charged with negative electricity, and, secondly, a remaining larger portion charged with positive electricity. These two parts taken together are called ions, i.e. wanderers. The negative ions, or electrons, or corpuscles, taken together constitute what we call negative electricity, and up to the present no one has been able to show that the corpuscle can be unelectrified. Hence the view has been expressed that what we call electricity is a kind of matter, atomic in structure, and that these negative ions or corpuscles collectively are, in fact, the atoms of the electric fluid. These corpuscles can move freely in the interior of some solids, moving between the molecules of the solid just as little dogs can run about in and amongst a crowd of people in a street. In these cases the substance is called a conductor of electricity. In other substances the movement of the corpuscles is more restricted, and these constitute the various kinds of so-called non-conductors.

The corpuscle, being a small charge of negative electricity, creates in all surrounding space a state called electric force. It is impossible to expound this action more in detail without the use of mathematical reasoning of a difficult character. Suffice it to say that this electric force must be a particular condition of strain or motion in the æther. If the corpuscle is in rapid motion, it creates in addition another kind of strain or motion called magnetic force. The electric force and the magnetic force are related to each other in free space in such a manner that if we know the difference between the values of the electric force at two very near points in space, we are able to tell the rate at which the magnetic force is changing with time in a direction at right angles to the line joining these near points in space. We cannot specify in greater detail the exact nature of these states or conditions which constitute magnetic force and electric force, until we know much more than we do at present about the real nature of the æther. The two fundamental qualities of the æther are, however, its capacity to sustain these states we call the magnetic force and the electric force.