The electrons of which we have spoken not only give rise to electric and magnetic force when in movement, but they are themselves set in motion by these forces. Thus electric force at any point moves electrons placed at that spot, and an electron in motion is affected and has its direction of motion changed when magnetic force acts on it.
Leaving further remarks on the relations of atoms, electricity, and æther until the end of the last lecture, we may conclude the present one by explaining the manner in which the observed facts connected with a Hertz oscillator are interpreted in terms of this electron hypothesis of electricity.
Take the simple case of two long insulated metal rods separated by a spark-gap. The process of charging one rod positively and the other negatively consists in forcing more corpuscles, or negative ions or electrons, into one conductor and removing some from the other. Any source of electromotive force, such as a dynamo or induction coil, is, on this hypothesis, a sort of electron-pump, which pumps electrons from one conductor and puts them into another. One conductor, therefore, gains in electron-pressure, and the other loses.
The excess of electrons in one conductor endeavour to escape, and a strain is produced on the electrons or atoms in the surrounding dielectric or air, which may be looked upon as the effort of the electrons, more or less tethered to the atoms, to escape. The air in the spark-gap is subjected to the most intense strain, and when this reaches a certain intensity some of the electrons are torn away from their atoms, and the air in the gap then becomes a conductor. The excess of electrons in one conductor rush through the channel thus prepared, and this constitutes an electric current. The first rush carries over too many electrons to equilibrate the electron-pressure, and hence the first torrent of migrating electrons in one direction is followed by a back-rush in the opposite one, this again in turn by another in the original direction, and so the equality in the number of electrons in each conductor is only established after a gradually diminishing series of to-and-fro rushes of electrons across the air-gap. This action constitutes a train of electrical oscillations. At the same time that these operations are going on in and between the conductors, the electrons attached to the atoms of the air or other dielectric all around are being violently oscillated. These oscillations may not proceed to such an extent as to detach electrons from their atoms, but they are sufficient to create rapidly reversed electric and magnetic forces. It appears that the very rapid movement to and fro of an electron causes a wave in the æther, just as the rapid movement of the hand through water causes a wave in water, or the vibration of the prong of a tuning-fork creates a wave in the air.
The electron has some grip on the æther, such that the sudden starting or stopping of the electron makes a disturbance which we may popularly describe as a splash in the æther. Hence, if a large number of electrons are suddenly started into motion in the same direction, the effect on the æther is something like casting a multitude of stones on the surface of still water, or the simultaneous action of a number of small explosions in the air. Anything, therefore, which, so to speak, lets the electrons go gradually, or softens the first rush, is inimical to the production of a vigorous electric wave. On the other hand, anything which causes the first rush of electrons from one conductor to another across the air-gap to be very sudden is advantageous, and results in a powerful wave. Experience shows that the nature of the metal surfaces, whether polished or rough, has a great influence on the wave-making power of the radiator. If the spark-balls or surfaces are rough and not polished, it seems to tone down the violence of the first electron rush, and the wave-making power of the oscillator is not so great as if the balls are polished.
At this point, however, it will be best to withhold further discussion on points of theory until we have considered the facts to be brought before you in the next lecture, showing that the electric radiation manufactured by means of electric oscillations is only one variety of a vast range of æther waves, some forms of which are recognizable by us as light and radiant heat.
CHAPTER VI.
WAVES AND RIPPLES IN THE ÆTHER.
HAVING in the last chapter explained the nature and mode of production of electric oscillations, and shown that when these take place in an open electric circuit or long straight rod they give rise to certain actions at a distance, rendered evident by the changes taking place in the conductivity of metallic powders, we have now to present the outlines of a proof that these actions are really due to a wave-motion of some description set up in the æther, which in nature is essentially the same as that which constitutes the agency we call light.
We shall begin by studying a few of the epoch-making discoveries we owe to the celebrated Heinrich Hertz, announced in a series of famous researches with which he surprised and delighted the scientific world in the years 1887 and 1888. These investigations opened a new and remarkable field of experimental work.