The precise form of apparatus used by Hertz in these researches is, however, unsuited for lecture demonstration, and I shall use on this occasion some arrangements of my own, which are only convenient modifications of appliances previously employed by other experimentalists. The devices here shown are, however, very convenient for public demonstrations.

This apparatus consists of two parts, a part for generating electric waves, which we shall call the radiator, and a part for detecting them, which is called the receiver.

The radiator consists of a zinc box, A ([see Fig. 73]), which is provided with hollow trunnions, and can be fixed to a suitable stand and turned in any direction. The box has an open end to it, and in its interior there are two brass rods about 4 inches long, each terminating in brass balls, S, 1 inch in diameter. These rods are thrust through corks fixed in the end of two ebonite tubes, which pass through the hollow trunnions of the box. The rods have their ends attached to very closely wound spirals of gutta-percha-covered wire contained in the ebonite tubes. These spirals are called choking coils. When the balls are arranged in the interior of the box in their proper position, they are about ¹⁄₁₆ inch apart, and the rods to which they are attached are in line with each other.

Fig. 73.—Electric wave radiator (A) and receiver (B).

The outer ends of the choking coils are connected to an induction coil or electrical machine, say a small Wimshurst machine, suitable for producing electric sparks about 2 or 3 inches in length. If then sparks are taken between the balls, we have an arrangement which is, in fact, a small Hertz oscillator or radiator. It has been fully explained in the last chapter that the action of the induction coil or electrical machine is first to create a difference in the electric condition of the balls, such that one is positively electrified and the other negatively. The balls and rods and the surrounding air, as already explained, then form a sort of Leyden jar or condenser, and in virtue of the electromotive force the air is electrically strained around the balls. When this strain reaches a particular value, the air between the balls passes at once into a conductive condition, and we have a discharge which is oscillatory in nature produced between the conductors. We may consider that the electrical charges on the two rods rush backwards and forwards, setting up on the rods an oscillatory surface electric current, and that this is accompanied by a very rapid reversal of the strain in the surrounding non-conductor or dielectric. This state of affairs results in sending out into space an effect called an electric wave.

Turning, then, to the receiver B ([Fig. 73]), we notice that this consists of a similarly shaped metal box, having in it a board to which are fixed two short nickel wires. These are crossed without touching in the interior of a small ebonite box ([see Fig. 74]). The wires are just covered inside the box with a very small quantity of fine nickel filings. To the end of the zinc receiver-box is fixed a long lead pipe, in the interior of which are two insulated wires, c, d.

Fig. 74.—Electric radiation detector (Miller).

These wires are joined to the extremities of the nickel wires in the receiver-box and then, passing through the lead pipe, they enter another metal box which contains a battery and electric bell. The pinch of nickel filings in the small ebonite box is not an electric conductor in its ordinary condition, and hence the electric circuit, including the battery and bell, is not complete. If, however, an electric oscillation is set up in the nickel receiver-wires, the mass of metal particles connecting them at once becomes a conductor, because little metallic granules stick or cohere together. The battery is thus able to send an electric current through the circuit, which includes the coherer, and the electric bell is caused to ring. It may be mentioned that in the actual apparatus employed the arrangement is not quite so simple. The coherer would be permanently injured if we were to attempt to send through it an electric current strong enough to ring an electric bell. Hence we associate with the coherer a contrivance called a relay. A single voltaic cell, E (a dry cell) ([see Fig. 75]), is joined up in series with the coherer C and this relay R. The latter is a sort of switch or circuit-closer of such kind that when a very feeble current passes through it it closes a second circuit through which a much stronger current can pass. The transition of the nickel filings from a non-conductive to a conductive condition is, therefore, only the means by which a very small current of electricity is allowed to pass through the circuit of an electro-magnet which forms the circuit of the relay. This action causes a piece of iron to be attracted, and this again in turn closes another circuit, and so enables the current from a second battery, F, of five or six cells to actuate the electric bell G. The arrangement of the two batteries, the relay coherer, and bell will be understood by studying the diagram of connections in [Fig. 75].