The really important condition in securing success in the performance of the experiments made with this apparatus is that the long wires which connect the receiver-box with the metal box containing the bell, battery, and relay shall be entirely enclosed in a lead pipe without joint, which is soldered at one end into the receiver-box and at the other into the battery-box. Another practical point is that these wires, where they enter the battery-box, must have included in their circuit two little coils of insulated wire of a good many turns, which are called “choking coils.” A third element of success is that the coherer or sensitive conductor shall be sensitive enough, but not too sensitive. This condition can only be obtained by a process of trial and failure. Being provided with these two pieces of apparatus, we can now proceed to exhibit a series of experiments of great interest.

Fig. 75.

In the first place, let the radiator-box and receiver-box be placed a few feet apart with their open mouths facing each other, like two guns arranged to fire down each other’s throats. Then, if all is in order when we make an electric spark between the two balls of the radiator, the electric bell in connection with the receiver will begin to ring, showing that the coherer in the receiver-box has been affected and made conductive by the electric wave sent out from the radiator-box. If a smart rap is then given to the receiver-box the clinging metallic filings in the ebonite box will be separated again and, the circuit being interrupted, the bell will stop ringing.

This being done, the radiator-box is then turned a little on one side by rotating it round its hollow trunnions like a gun until the open mouths of the two boxes no longer face each other. It will then be found, on repeating the former experiment, that the bell will not ring when a spark is made between the balls. A little experimenting will show that the action which affects the coherer is propagated out from the radiator-box in straight lines like the light from a lamp, and that we are here dealing with something which has all the character of radiation. In the next place, let the receiver- and radiator-boxes be again arranged with their open mouths facing each other. We make a spark and again secure the responsive action of the bell. We shall now proceed to prove that this effect, which is called electric radiation, passes quite freely through certain substances, but is more or less completely stopped by others. For instance, if we hold a sheet of iron, tinfoil, or even paper covered with silver leaf between the open mouths of the radiator and receiver, we find that the bell of the receiver will not ring even when a rapid series of oscillatory sparks are made in the radiator. These sheets of metal, thick or thin, are quite opaque to the electric radiation proceeding from the spark-balls. On the other hand, we find a sheet of paper or card, a wooden board, a sheet of glass, a slab of wax or bitumen, sulphur, marble, or slate, are all quite pervious or transparent, and when held between the radiator and receiver do not hinder at all perceptibly the action of the former on the latter. We conclude, therefore, that some bodies are opaque and some transparent to the electric radiation. But the classification does not agree with the classification as regards opacity or transparency for light. Wood, marble, and pitch are optically opaque, but electrically transparent. The general law, however, which decides the question of opacity or transparency for electric radiation, is as follows: All good electrical conductors are opaque to electric radiation, and all good insulators or non-conductors are transparent.

Hence we see at once why metal sheets are opaque, and wood, wax, or glass transparent, to the electric radiation from the spark-balls.

We may go one step further. If we take some sheets of perforated zinc or wire gauze, or even a large packet of pins, or paper bag full of iron filings, we shall find that all these bodies are practically opaque to the electric rays. Moreover, we can show that not only is the above law true for solids, but it holds good for liquids as well. I have provided here a number of flat glass bottles which are filled with various liquids, salt water, fresh water, solution of soda, paraffin oil, olive oil, turpentine and methylated spirits.

If we test an empty glass bottle between the radiator and receiver, we can assure ourselves that the bottle itself is transparent to the electric radiation.

If, then, we take the bottles containing the various liquids and test them one by one between the radiator and the receiver, we find that the bottles containing the paraffin oil, the olive oil, and the turpentine are transparent to the electric radiation, but that the bottles containing the salt water, the fresh water, the solution of soda, and the methylated spirits are all opaque. The oils and liquids similar to them are all good non-conductors, whereas water and various aqueous solutions are fairly good conductors of electricity, and hence these liquids, although they are all about equally transparent to light, behave very differently to electric radiation. As regards the electric ray, a bottle full of pure water is as opaque to the electric radiation we are here using as it would be to light if it were filled with black ink.

Experiment shows that every object containing water, or which is wet, is exceedingly opaque to the electric radiation we are employing. Thus, for instance, if I take a dry duster folded in four, and hold it in the path of the electric ray, you see that it is quite transparent, and that the bell attached to the receiver rings as easily as if there were no duster there at all. If, however, we dip the duster in water, and then hold it between the radiator and receiver, we find that the wet duster is perfectly opaque.