[Q] The specimens submitted to Dr. Carpenter were taken from a block of Eozoon rock, obtained in the Petite Nation seigniory, too late to afford Dr. Dawson an opportunity of examination. They are from the same horizon as the Grenville specimens.—W. E. L.

[R] Introduction to the Study of the Foraminifera, p. 10.

"The additional opportunities I have thus enjoyed will be found, I believe, to account satisfactorily for the differences to be observed between Dr. Dawson’s account of the Eozoon and my own. Had I been obliged to form my conclusions respecting its structure only from the specimens submitted to Dr. Dawson, I should very probably have seen no reason for any but the most complete accordance with his description: while if Dr. Dawson had enjoyed the advantage of examining the entire series of preparations which have come under my own observation, I feel confident that he would have anticipated the corrections and additions which I now offer.

"Although the general plan of growth described by Dr. Dawson, and exhibited in his photographs of vertical sections of the fossil, is undoubtedly that which is typical of Eozoon, yet I find that the acervuline mode of growth, also mentioned by Dr. Dawson, very frequently takes its place in the more superficial parts, where the chambers, which are arranged in regular tiers in the laminated portions, are heaped one upon another without any regularity, as is particularly well shown in some decalcified specimens which I have myself prepared from the slices last put into my hands. I see no indication that this departure from the normal type of structure has resulted from an injury; the transition from the regular to the irregular mode of increase not being abrupt but gradual. Nor shall I be disposed to regard it as a monstrosity; since there are many other Foraminifera in which an originally definite plan of growth gives place, in a later stage, to a like acervuline piling-up of chambers.

"In regard to the form and relations of the chambers, I have little to add to Dr. Dawson’s description. The evidence afforded by their internal casts concurs with that of sections, in showing that the segments of the sarcode-body, by whose aggregation each layer was constituted, were but very incompletely divided by shelly partitions; this incomplete separation (as Dr. Dawson has pointed out) having its parallel in that of the secondary chambers in Carpenteria. But I have occasionally met with instances in which the separation of the chambers has been as complete as it is in Foraminifera generally; and the communication between them is then established by several narrow passages exactly corresponding with those which I have described and figured in Cycloclypeus.[S]

[S] Op. cit., p. 294.

"The mode in which each successive layer originates from the one which had preceded it, is a question to which my attention has been a good deal directed; but I do not as yet feel confident that I have been able to elucidate it completely. There is certainly no regular system of apertures for the passage of stolons giving origin to new segments, such as are found in all ordinary Polythalamous Foraminifera, whether their type of growth be rectilinear, spiral, or cyclical; and I am disposed to believe that where one layer is separated from another by nothing else than the proper walls of the chambers,—which, as I shall presently show, are traversed by multitudes of minute tubuli giving passage to pseudopodia,—the coalescence of these pseudopodia on the external surface would suffice to lay the foundation of a new layer of sarcodic segments. But where an intermediate or supplemental skeleton, consisting of a thick layer of solid calcareous shell, has been deposited between two successive layers, it is obvious that the animal body contained in the lower layer of chambers must be completely cut off from that which occupies the upper, unless some special provision exist for their mutual communication. Such a provision I believe to have been made by the extension of bands of sarcode, through canals left in the intermediate skeleton, from the lower to the upper tier of chambers. For in such sections as happen to have traversed thick deposits of the intermediate skeleton, there are generally found passages distinguished from those of the ordinary canal-system by their broad flat form, their great transverse diameter, and their non-ramification. One of these passages I have distinctly traced to a chamber, with the cavity of which it communicated through two or three apertures in its proper wall; and I think it likely that I should have been able to trace it at its other extremity into a chamber of the superjacent tier, had not the plane of the section passed out of its course. Riband-like casts of these passages are often to be seen in decalcified specimens, traversing the void spaces left by the removal of the thickest layers of the intermediate skeleton.

"But the organization of a new layer seems to have not unfrequently taken place in a much more considerable extension of the sarcode-body of the pre-formed layer; which either folded back its margin over the surface already consolidated, in a manner somewhat like that in which the mantle of a Cyprœa doubles back to deposit the final surface-layer of its shell, or sent upwards wall-like lamellæ, sometimes of very limited extent, but not unfrequently of considerable length, which, after traversing the substance of the shell, like trap-dykes in a bed of sandstone, spread themselves out over its surface. Such, at least, are the only interpretations I can put upon the appearances presented by decalcified specimens. For on the one hand, it is frequently to be observed that two bands of serpentine (or other infiltrated mineral), which represent two layers of the original sarcode-body of the animal, approximate to each other in some part of their course, and come into complete continuity; so that the upper layer would seem at that part to have had its origin in the lower. Again, even where these bands are most widely separated, we find that they are commonly held together by vertical lamellæ of the same material, sometimes forming mere tongues, but often running to a considerable length. That these lamellæ have not been formed by mineral infiltration into accidental fissures in the shell, but represent corresponding extensions of the sarcode-body, seems to me to be indicated not merely by the characters of their surface, but also by the fact that portions of the canal-system may be occasionally traced into connection with them.

"Although Dr. Dawson has noticed that some parts of the sections which he examined present the fine tubulation characteristic of the shells of the Nummuline Foraminifera, he does not seem to have recognised the fact, which the sections placed in my hands have enabled me most satisfactorily to determine,—that the proper walls of the chambers everywhere present the fine tubulation of the Nummuline shell; a point of the highest importance in the determination of the affinities of Eozoon. This tubulation, although not seen with the clearness with which it is to be discerned in recent examples of the Nummuline type, is here far better displayed than it is in the majority of fossil Nummulites, in which the tubuli have been filled up by the infiltration of calcareous matter, rendering the shell-substance nearly homogeneous. In Eozoon these tubuli have been filled up by the infiltration of a mineral different from that of which the shell is composed, and therefore not coalescing with it; and the tubular structure is consequently much more satisfactorily distinguishable. In decalcified specimens, the free margins of the casts of the chambers are often seen to be bordered with a delicate white glistening fringe; and when this fringe is examined with a sufficient magnifying power, it is seen to be made up of a multitude of extremely delicate aciculi, standing side by side like the fibres of asbestos. These, it is obvious, are the internal casts of the fine tubuli which perforated the proper wall of the chambers, passing directly from its inner to its outer surface; and their presence in this situation affords the most satisfactory confirmation of the evidence of that tubulation afforded by thin sections of the shell-wall.